UCIe

Last updated

Universal Chiplet Interconnect Express (UCIe) is an open specification for a die-to-die interconnect and serial bus between chiplets. It is co-developed by AMD, Arm, ASE Group, Google Cloud, Intel, Meta, Microsoft, Qualcomm, Samsung, and TSMC. [1]

Contents

In August 2022, Alibaba Group and Nvidia joined as board members. [2]

Overview

A common chiplet interconnect specification enables construction of large System-on-Chip (SoC) packages that exceed maximum reticle size. It allows intermixing components from different silicon vendors within the same package and improves manufacturing yields by using smaller dies. Each chiplet can use a different silicon manufacturing process, suitable for a specific device type, or computing performance and power draw requirements. [3] [4]

Specifications

The UCIe 1.0 specification was released on March 2, 2022. [5] It defines physical layer, protocol stack and software model, as well as procedures for compliance testing. The physical layer supports up to 32 GT/s with 16 to 64 lanes and uses a 256 byte Flow Control Unit (FLIT) for data, similar to PCIe 6.0; the protocol layer is based on Compute Express Link with CXL.io (PCIe), CXL.mem and CXL.cache protocols.

Various on-die interconnect technologies are defined, like organic substrate for a 'standard' 2D package, or embedded silicon bridge (EMIB), silicon interposer, and fanout embedded bridge for 'advanced' 2.5D/3D packages. [3] Physical specifications are based on Intel's Advanced Interface Bus (AIB). [4] [6] [7]

Shorter signal paths allow the links to have 20× better I/O performance and power consumption (~0.5 pJ per bit) comparing to typical PCIe SerDes, with bandwidth density up to 1.35 TByte/s per mm2 for a common bump pitch of 45 μm, and 3.24× higher density with a bump pitch of 25 μm. [3]

Future versions may include additional protocols, wider data links, and higher density connections. [3]

The UCIe 1.1 specification was released on August 8, 2023. [8]

Related Research Articles

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips that are present in everyday electronic devices. It is a multiple-step photolithographic and physio-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.

<span class="mw-page-title-main">PCI Express</span> Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, sound cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

<span class="mw-page-title-main">Chipset</span> Electronic component to manage data flow of a CPU

In a computer system, a chipset is a set of electronic components on one or more integrated circuits that manages the data flow between the processor, memory and peripherals. The chipset is usually found on the motherboard of computers. Chipsets are usually designed to work with a specific family of microprocessors. Because it controls communications between the processor and external devices, the chipset plays a crucial role in determining system performance.

<span class="mw-page-title-main">Southbridge (computing)</span> One of the two chips in the core logic chipset architecture on a PC motherboard

The southbridge is one of the two chips in the core logic chipset on older personal computer (PC) motherboards, the other being the northbridge. As of 2023, most personal computer devices no longer use a set of two chips, and instead have a single chip acting as the 'chipset', for example Intel's Z790 chipset.

<span class="mw-page-title-main">RapidIO</span> Electrical connection technology

The RapidIO architecture is a high-performance packet-switched electrical connection technology. It supports messaging, read/write and cache coherency semantics. Based on industry-standard electrical specifications such as those for Ethernet, RapidIO can be used as a chip-to-chip, board-to-board, and chassis-to-chassis interconnect.

The Intel QuickPath Interconnect (QPI) is a point-to-point processor interconnect developed by Intel which replaced the front-side bus (FSB) in Xeon, Itanium, and certain desktop platforms starting in 2008. It increased the scalability and available bandwidth. Prior to the name's announcement, Intel referred to it as Common System Interface (CSI). Earlier incarnations were known as Yet Another Protocol (YAP) and YAP+.

The Arm Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip interconnect specification for the connection and management of functional blocks in system-on-a-chip (SoC) designs. It facilitates development of multi-processor designs with large numbers of controllers and components with a bus architecture. Since its inception, the scope of AMBA has, despite its name, gone far beyond microcontroller devices. Today, AMBA is widely used on a range of ASIC and SoC parts including applications processors used in modern portable mobile devices like smartphones. AMBA is a registered trademark of Arm Ltd.

Tolapai is the code name of Intel's embedded system on a chip (SoC) which combines a Pentium M (Dothan) processor core, DDR2 memory controllers and input/output (I/O) controllers, and a QuickAssist integrated accelerator unit for security functions.

<span class="mw-page-title-main">Thermal copper pillar bump</span>

The thermal copper pillar bump, also known as the "thermal bump", is a thermoelectric device made from thin-film thermoelectric material embedded in flip chip interconnects for use in electronics and optoelectronic packaging, including: flip chip packaging of CPU and GPU integrated circuits (chips), laser diodes, and semiconductor optical amplifiers (SOA). Unlike conventional solder bumps that provide an electrical path and a mechanical connection to the package, thermal bumps act as solid-state heat pumps and add thermal management functionality locally on the surface of a chip or to another electrical component. The diameter of a thermal bump is 238 μm and 60 μm high.

<span class="mw-page-title-main">Intel X58</span> Chip designed by Intel

The Intel X58 is an Intel chip designed to connect Intel processors with Intel QuickPath Interconnect (QPI) interface to peripheral devices. Supported processors implement the Nehalem microarchitecture and therefore have an integrated memory controller (IMC), so the X58 does not have a memory interface. Initially supported processors were the Core i7, but the chip also supported Nehalem and Westmere-based Xeon processors.

<span class="mw-page-title-main">UniPro</span>

UniPro is a high-speed interface technology for interconnecting integrated circuits in mobile and mobile-influenced electronics. The various versions of the UniPro protocol are created within the MIPI Alliance, an organization that defines specifications targeting mobile and mobile-influenced applications.

NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initial NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.

In semiconductor manufacturing, the International Roadmap for Devices and Systems defines the 5 nm process as the MOSFET technology node following the 7 nm node. In 2020, Samsung and TSMC entered volume production of 5 nm chips, manufactured for companies including Apple, Marvell, Huawei and Qualcomm.

The Gen-Z Consortium is a trade group of technology vendors involved in designing CPUs, random access memory, servers, storage, and accelerators. The goal was to design an open and royalty-free "memory-semantic" bus protocol, which is not limited by the memory controller of a CPU, to be used in either a switched fabric or a point-to-point device link on a standard connector.

Coherent Accelerator Processor Interface (CAPI), is a high-speed processor expansion bus standard for use in large data center computers, initially designed to be layered on top of PCI Express, for directly connecting central processing units (CPUs) to external accelerators like graphics processing units (GPUs), ASICs, FPGAs or fast storage. It offers low latency, high speed, direct memory access connectivity between devices of different instruction set architectures.

<span class="mw-page-title-main">Epyc</span> AMD brand for server microprocessors

Epyc is a brand of multi-core x86-64 microprocessors designed and sold by AMD, based on the company's Zen microarchitecture. Introduced in June 2017, they are specifically targeted for the server and embedded system markets.

M-PHY is a high speed data communications physical layer protocol standard developed by the MIPI Alliance, PHY Working group, and targeted at the needs of mobile multimedia devices. The specification's details are proprietary to MIPI member organizations, but a substantial body of knowledge can be assembled from open sources. A number of industry standard settings bodies have incorporated M-PHY into their specifications including Mobile PCI Express, Universal Flash Storage, and as the physical layer for SuperSpeed InterChip USB.

Compute Express Link (CXL) is an open standard for high-speed, high capacity central processing unit (CPU)-to-device and CPU-to-memory connections, designed for high performance data center computers. CXL is built on the serial PCI Express (PCIe) physical and electrical interface and includes PCIe-based block input/output protocol (CXL.io) and new cache-coherent protocols for accessing system memory (CXL.cache) and device memory (CXL.mem). The serial communication and pooling capabilities allows CXL memory to overcome performance and socket packaging limitations of common DIMM memory when implementing high storage capacities.

References

  1. "About UCIe". uciexpress.org. Retrieved 2022-03-31.
  2. "UCIe Announces Incorporation and New Board Members at FMS 2022". uciexpress.org. Retrieved 2022-12-14.
  3. 1 2 3 4 "Universal Chiplet Interconnect Express (UCIe): Building an open chiplet ecosystem" (PDF). uciexpress.org. Retrieved 3 September 2023.
  4. 1 2 "Universal Chiplet Interconnect Express (UCIe) Announced: Setting Standards for the Chiplet Ecosystem".
  5. "Leaders in semiconductors, packaging, IP suppliers, foundries, and cloud service providers join forces to standardize chiplet ecosystem" (PDF). uciexpress.org. Retrieved 3 September 2023.
  6. "Intel Joins CHIPS Alliance, Contributes Advanced Interface Bus".
  7. "AIB-specification". GitHub . 20 April 2022.
  8. "UCIe (Universal Chiplet Interconnect Express) Consortium Releases its 1.1 Specification" (PDF). uciexpress.org. Retrieved 13 September 2023.