Urban aquaculture

Last updated
Aquaculture Tiang Sabah Fish-aquaculture-01.jpg
Aquaculture

Urban aquaculture (also spelled aquiculture) is the aquatic farming of organisms, including all types of fish, cuttlefish, mussel shrimp and aqua plants within the urban environment (rivers, ponds, lakes, canals). [1] In essence, urban aquaculture is the practice of aquaculture in an urban, or urbanising, environment. [2] Urban aquaculture systems can be associated with a multitude of different production locations, species used, environment, and production intensity. The use of urban aquaculture has increased over the last several years as societies continue to urbanise and demand for food in urban environments increases. [3] Methods of production include recirculating systems; land-based culture systems; multifunctional wetlands; ponds, borrow pits and lakes; cages and culture-based fisheries. [3] [4] Most production in urban environments will include either extensive (productivity is based solely on natural runoff) or intensive (tanks and cages of monoculture production), compared to aquaculture in general which is normally semi-intensive. [3]

Contents

History

Urban aquaculture emerges from the end of World War II (which was brought on by consumer demand for more seafood), through the 1970s (when it shifted from a small-scale community practice to a commercial practice). Furthermore, it is described how urban aquaculture has continued to steadily increase around the world until now. [4]

Going into expert detail on the history and inception of urban aquaculture throughout Europe and discussing early examples prototypes of urban aquaculture that could be found in “Roman villas, monasteries, castles, manors and millponds” in ancient Europe. [5] It can be concluded that aquaculture during this time represented advancements in technology, ways to demonstrate social status, a means to avoid poor fish capture, and an increasing consumer demand for seafood. [5] Furthermore, It is described that the pressures and events that eventually led to abandoning these various systems, which include several notable historical events such as the fall of the Roman Empire, and both the depopulation and economic regression that occurred during the medieval time period. [5]

According to White et al. (2004), aquaculture is mostly practiced in Asia with over 70% of the production solely coming from China. This amount of production is 33% of the world's total fish production. While aquaculture is commonly practices on an industrial basis, the three most farmed fish are from small scale aquaculture. Furthermore, they describe how urban aquaculture has continued to steadily increase around the world until now. The legitimacy of their claims is backed by the fact that they are writing for a SeaWeb an Aquaculture Clearinghouse dedicated to researching and publishing content on aquaculture policy and practices. [4]

Aquaculture or aqua farming dates back to 1000 BCE China where it is actively used even today. From there it started spreading to other parts of the world, such as Europe and Asia. Aquaculture continued developing, but it became noticeable only during the industrialisation era (Alimentarium.org, 2019). [6] Aquaculture reached global scales in the last decade mostly due to increasing demand for shrimps and prawns by developed countries. Also, there is a need for other possibilities for fishermen due to the fear of reduction of the marine population from overfishing and climate changes. [6]

Aqua farming in a lake Cage fish farming in lake.jpg
Aqua farming in a lake

Types of use

Providing a thorough account of production methods currently used in Europe such as recirculation units, horizontally integrated marine aquaculture facilities and systems exploiting industrial byproducts. [5]

Various types of urban aquaculture are currently in use throughout the globe - going into distinct types and their specific use, such as: land-based culture systems; multifunctional wetlands; ponds, borrow pits and lakes; cages and culture-based fisheries. [3]

Recirculating Aquaculture Systems (RAS) are the water reuse systems used in many areas. [7]

There are numerous ways of using urban aquaculture systems. There are farming systems such as water-based systems which mostly use cages and pens. Land-based systems make use of ponds, tanks and raceways. Recycling systems are usually high control enclosed systems, whereas irrigated farm systems are for livestock fish, agriculture and irrigation ponds(Fao.org, 2019). However, it can be said that water-based systems are the most often used systems. [8]

Impacts

Optimal water parameters for cold- and warm-water fish in intensive aquaculture [9]
Acidity pH 6–9
Arsenic <440 µg/L
Alkalinity >20 mg/L (as CaCO3)
Aluminum <0.075 mg/L
Ammonia (non-ionized)<O.O2mg/L
Cadmium <0.0005 mg/L in soft water;
<0.005 mg/L in hard water
Calcium >5 mg/L
Carbon dioxide <5–10 mg/L
Chloride >4.0 mg/L
Chlorine <0.003 mg/L
Copper <0.0006 mg/L in soft water;
<0.03 mg/L in hard water
Gas supersaturation <100% total gas pressure
(103% for salmonid eggs/fry)
(102% for lake trout)
Hydrogen sulfide <0.003 mg/L
Iron <0.1 mg/L
Lead <0.02 mg/L
Mercury <0.0002 mg/L
Nitrate <1.0 mg/L
Nitrite <0.1 mg/L
Oxygen 6 mg/L for coldwater fish
4 mg/L for warmwater fish
Selenium <0.01 mg/L
Total dissolved solids <200 mg/L
Total suspended solids <80 NTU over ambient levels
Zinc <0.005 mg/L

Advantages

The potential opportunities include: underprivileged community members may be able to access more affordable food; local production of fish and aquatic plants may prevent food insecurity; livelihoods may improve; and there may be opportunities for high returns on investment. The vast amount of research that Bunting and Little have conducted on this subject gives great legitimacy to their overview of the costs and benefits of urban aquaculture. [2]

The urban aquaculture is of great and undeniable importance, and has multiple benefits, such as securing food and maintaining the offered goods to meet the market's demand, as well as guaranteeing numerous job opportunities and stable income for many families (Bunting et al.). The most important thing urban aquaculture provides to the society and the environment is the fact that it reuses wastewater and by-products from agriculture (Bunting et al.). This offers a valid solution to the problem of limited access to resources and this is why the urban aquaculture should be more widespread and encouraged for all the benefits it brings to the society as a whole. [10]

Another advantage is definitely for the economy. Aquaculture is a great alternative food source and fuel source. It can increase the number of possible jobs since it provides new products and more labor (Bunting and Little, 455). When talking about environmental benefits, aquaculture helps reduce pollution with the help of mollusks and seaweed. It gives a way for sustainable use of sea resources and helps conserve biodiversity. Finally, it reduces the overall environmental disturbance because there is a decreased need for the fishing of wild stock and it provides alternative farming options. [2]

Disadvantages

According to Bunting and Little the constraints of urban aquaculture include, production variations, denying access to underprivileged members of a community; urban sprawl; user competition; theft; resource contamination; environmental pollution; high capital costs; financial risks; susceptibility to disease; technical failures; and volatile market conditions. [2] According to one of the authors assessment on urban aquaculture, the world's population residing in cities exceeded half of the total in 2007 and a lot of them getting by in poor economic status. [3]

Bunting and Little (2003) recommends a system-based approach for aquaculture. In the annotated bibliography provided, it was also notable that soil fertility is quickly declining. In addition, by 2030 about ¾ of Latin American will be in cities. [2] This makes it all the more important for urban means of food production. Twenty percent of the food produced by the world is from urban. [2]

Those against aquaculture claim that this method does not help in reducing waste, but rather cause it. In this way, aquaculture becomes a threat to the coastal ecosystem. Many say that it actually contaminates water and threatens the health of those who use that water. Also, some fish food can be contaminated by pesticides and chemicals used to feed the fish. It is said that aquaculture generally has a negative impact on the environment since it has to destroy in order to build fish cages and tanks. [2]

Implementation

New York City

Schreibman and Zarnoch discuss the potential results of implementing urban aquaculture. To do so they use New York City, United States as a model site. They provide great detail on the process of moving “urban aquaculture from concept to practice… [7] Schreibman and Zarnoch (2009) states that the United States’ strict standard for food production is an open door for good food production from aquaculture. [7] They discuss the potential impacts such systems might have on the environment and economy in metropolitan areas. According to the authors, the success of aquaculture is dependent on the financial support it receives. [7]

Cape Town

Aquaculture was implemented in Cape Town to produce more than two tons of fish annually. Some entrepreneurs like Alan Flemming, whose aim is to provide food to low income communities through an innovative urban aquaculture system, which already received global recognition. With the technology applied, the aquaculture farm supplied Cape Town's 39 top restaurants. [11] Places like Cape Town tried to implement aquaculture and are now producing more than two tons of fish annually. [12]

Brazil

Successful implementation of aquaculture would mean it is a sustainable and functioning method of aquaculture use. Implementation requires careful and concise planning with emphasis on environment preservation, rather than destruction. In Brazil, the government has been promoting studies on zoning and demarcation of aquaculture parks, which could, if successfully carried out, make Brazil the largest producers of fish in net-cages in the world. [12]

Systems

As urban aquacultures are starting to become more wide spread, especially in coastal areas, it is only logical to observe and study the systems used in the production of the fish and all the other products. There are three systems that differ from one another in the intensity they are managed by. The systems are; extensive, semi-intensive, and intensive. The extensive aquaculture is mainly characterized by increased dependence on natural food in the process of producing the stock (Bunting et al.). The Semi-intensive production, on the other hand, is primarily based on the fertilizer applications; this is done in order to improve the natural food production and to maintaining the use of low-protein supplements (Bunting et al.). As for the intensively managed systems, however, they depend on externally sourced high protein input feed. Also, the by-products and waste resources are utilized and used to produce food of high protein value and level such as tubifex worms and fly larvae to supply aquaculture producers (Bunting et al.). This shows and highlights the different means of production of the urban aquaculture and how they are maintained and integrated in the process of farming the fish and the other products. [10]

There are three general types of aquaculture systems based on the way they are managed. They include extensive, semi-intensive and intensive systems. [13] Extensive aquaculture systems are usually conducted in medium-to-large-sized ponds or water bodies. The fish production depends on the natural productivity of the water, making this system low cost and maintenance. With semi-intensive fish farming, the production of fish per unit is low. However, they tend to be incomplete and are rarely used as a sole food source. Intensive fish farming involves that the quantity of fish produced per unit of rearing area is great. To intensify the culture, production factors have to be controlled to improve the production conditions. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Aquaculture</span> Farming of aquatic organisms

Aquaculture, also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants. Aquaculture involves cultivating freshwater, brackish water and saltwater populations under controlled or semi-natural conditions, and can be contrasted with commercial fishing, which is the harvesting of wild fish. Mariculture, commonly known as marine farming, refers specifically to aquaculture practiced in seawater habitats and lagoons, opposed to in freshwater aquaculture. Pisciculture is a type of aquaculture that consists of fish farming to obtain fish products as food.

<span class="mw-page-title-main">Mariculture</span> Cultivation of marine organisms in the open ocean

Mariculture or marine farming is a specialized branch of aquaculture involving the cultivation of marine organisms for food and other animal products, in enclosed sections of the open ocean, fish farms built on littoral waters, or in artificial tanks, ponds or raceways which are filled with seawater. An example of the latter is the farming of marine fish, including finfish and shellfish like prawns, or oysters and seaweed in saltwater ponds. Non-food products produced by mariculture include: fish meal, nutrient agar, jewellery, and cosmetics.

<span class="mw-page-title-main">Intensive farming</span> Type of agriculture using high inputs to try to get high outputs

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital and labour, and higher crop yields per unit land area.

<span class="mw-page-title-main">Fish farming</span> Raising fish commercially in enclosures

Fish farming or pisciculture involves commercial breeding of fish, usually for food, in fish tanks or artificial enclosures such as fish ponds. It is a particular type of aquaculture, which is the controlled cultivation and harvesting of aquatic animals such as fish, crustaceans, molluscs and so on, in natural or pseudo-natural environment. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species' natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species produced in fish farming are carp, catfish, salmon and tilapia.

<span class="mw-page-title-main">Milkfish</span> Species of fish

The milkfish is the sole living species in the family Chanidae. However, there are at least five extinct genera from the Cretaceous. The repeating scientific name (tautonym) is from Greek khanos.

<span class="mw-page-title-main">Fishery</span> Raising or harvesting fish

Fishery can mean either the enterprise of raising or harvesting fish and other aquatic life; or more commonly, the site where such enterprise takes place. Commercial fisheries include wild fisheries and fish farms, both in freshwater waterbodies and the oceans. About 500 million people worldwide are economically dependent on fisheries. 171 million tonnes of fish were produced in 2016, but overfishing is an increasing problem — causing declines in some populations.

<span class="mw-page-title-main">Fish pond</span> Man-made body of standing water used for pisciculture

A fish pond or fishpond is a controlled pond, small artificial lake or retention basin that is stocked with fish and is used in aquaculture for fish farming, for recreational fishing, or for ornamental purposes.

<span class="mw-page-title-main">Marine shrimp farming</span> Aquaculture of shrimp or prawns

Marine shrimp farming is an aquaculture business for the cultivation of marine shrimp or prawns for human consumption. Although traditional shrimp farming has been carried out in Asia for centuries, large-scale commercial shrimp farming began in the 1970s, and production grew steeply, particularly to match the market demands of the United States, Japan and Western Europe. The total global production of farmed shrimp reached more than 1.6 million tonnes in 2003, representing a value of nearly 9 billion U.S. dollars. About 75% of farmed shrimp is produced in Asia, in particular in China and Thailand. The other 25% is produced mainly in Latin America, where Brazil, Ecuador, and Mexico are the largest producers. The largest exporting nation is India.

Inland saline aquaculture is the farming or culture of aquatic animals and plants using inland sources of saline groundwater rather than the more common coastal aquaculture methods. As a side benefit, it can be used to reduce the amount of salt in underground water tables, leading to an improvement in the surrounding land usage for agriculture. Due to its nature, it is only commercially possible in areas that have large reserves of saline groundwater, such as Australia.

<span class="mw-page-title-main">Aquaculture of tilapia</span> Third most important fish in aquaculture after carp and salmon

Tilapia has become the third most important fish in aquaculture after carp and salmon; worldwide production exceeded 1.5 million metric tons in 2002 and increases annually. Because of their high protein content, large size, rapid growth, and palatability, a number of coptodonine and oreochromine cichlids—specifically, various species of Coptodon, Oreochromis, and Sarotherodon—are the focus of major aquaculture efforts.

<span class="mw-page-title-main">Integrated multi-trophic aquaculture</span> Type of aquaculture

Integrated multi-trophic aquaculture (IMTA) provides the byproducts, including waste, from one aquatic species as inputs for another. Farmers combine fed aquaculture with inorganic extractive and organic extractive aquaculture to create balanced systems for environment remediation (biomitigation), economic stability and social acceptability.

<span class="mw-page-title-main">Fishing in India</span> Major industry employing 14.5 million people

Fishing in India is a major sector within the economy of India contributing 1.07% of its total GDP. The fishing sector in India supports the livelihood of over 28 million people in the country, especially within the marginalized and vulnerable communities. India is the third largest fish producing country in the world accounting for 7.96% of the global production and second largest producer of fish through aquaculture, after China. The total fish production during the FY 2020-21 is estimated at 14.73 million metric tonnes. According to the National Fisheries Development Board the Fisheries Industry generates an export earnings of Rs 334.41 billion. Centrally sponsored schemes will increase exports by Rs 1 lakh crore in FY25. 65,000 fishermen have been trained under these schemes from 2017 to 2020. Freshwater fishing consists of 55% of total fish production.

<span class="mw-page-title-main">Raceway (aquaculture)</span> Artificial channel used in aquaculture

A raceway, also known as a flow-through system, is an artificial channel used in aquaculture to culture aquatic organisms. Raceway systems are among the earliest methods used for inland aquaculture. A raceway usually consists of rectangular basins or canals constructed of concrete and equipped with an inlet and outlet. A continuous water flow-through is maintained to provide the required level of water quality, which allows animals to be cultured at higher densities within the raceway.

<span class="mw-page-title-main">Aquaculture in China</span>

China, with one-fifth of the world's population, accounts for two-thirds of the world's reported aquaculture production.

Organic aquaculture is a holistic method for farming fish and other marine species in line with organic principles. The ideals of this practice established sustainable marine environments with consideration for naturally occurring ecosystems, use of pesticides, and the treatment of aquatic life. Managing aquaculture organically has become more popular since consumers are concerned about the harmful impacts of aquaculture on themselves and the environment.

<span class="mw-page-title-main">Aquaculture in Canada</span>

Aquaculture is the farming of fish, shellfish or aquatic plants in either fresh or saltwater, or both. The farmed animals or plants are cared for under a controlled environment to ensure optimum growth, success and profit. When they have reached an appropriate size, they are harvested, processed, and shipped to markets to be sold. Aquaculture is practiced all over the world and is extremely popular in countries such as China, where population is high and fish is a staple part of their everyday diet.

<span class="mw-page-title-main">Offshore aquaculture</span> Fish farms in waters some distance away from the coast

Offshore aquaculture, also known as open water aquaculture or open ocean aquaculture, is an emerging approach to mariculture where fish farms are positioned in deeper and less sheltered waters some distance away from the coast, where the cultivated fish stocks are exposed to more naturalistic living conditions with stronger ocean currents and more diverse nutrient flow. Existing "offshore" developments fall mainly into the category of exposed areas rather than fully offshore. As maritime classification society DNV GL has stated, development and knowledge-building are needed in several fields for the available deeper water opportunities to be realized.

<span class="mw-page-title-main">Aquaculture in South Korea</span>

South Korea is a major center of aquaculture production, and the world's third largest producer of farmed algae as of 2020.

Aquaculture in Madagascar started to take off in the 1980s. The industry includes the cultivation of sea cucumbers, seaweed, fish and shrimp and is being used to stimulate the country's economy, increase the wages of fishermen and women, and improve the regions ocean water quality. Coastal regions of Madagascar are reliant on the Indian Ocean's marine resources as a source of food, income, and cultural identity.

<span class="mw-page-title-main">Recirculating aquaculture system</span> Fish farming method

Recirculating aquaculture systems (RAS) are used in home aquaria and for fish production where water exchange is limited and the use of biofiltration is required to reduce ammonia toxicity. Other types of filtration and environmental control are often also necessary to maintain clean water and provide a suitable habitat for fish. The main benefit of RAS is the ability to reduce the need for fresh, clean water while still maintaining a healthy environment for fish. To be operated economically commercial RAS must have high fish stocking densities, and many researchers are currently conducting studies to determine if RAS is a viable form of intensive aquaculture.

References

  1. "Urban Aquaculture". The RUAF Foundation. 2013-11-26. Retrieved 2019-05-08.
  2. 1 2 3 4 5 6 7 Bunting, Stuart; Little, David C (2007). "Urban Aquaculture". Annotated bibliography on urban agriculture. hdl:10625/32959. OCLC   757376506.
  3. 1 2 3 4 5 Bunting, Stuart W.; Little, David C. (2015). "Urban aquaculture for resilient food systems". In de Zeeuw, Henk; Drechsel, Pay (eds.). Cities and Agriculture: Developing Resilient Urban Food Systems. Routledge. pp. 312–335. ISBN   978-1-317-50662-1.
  4. 1 2 3 White, Kathryn; O'Neill, Brendan; Tzankova, Zdravka (2004). At a Crossroads: Will Aquaculture Fulfill the Promise of the Blue Revolution? (PDF).
  5. 1 2 3 4 Bunting, S. W.; Little, D. C. (2005). "The emergence of urban aquaculture in Europe". Urban aquaculture. pp. 119–135. doi:10.1079/9780851998299.0119. ISBN   978-0-85199-829-9.
  6. 1 2 "The history of aquaculture". www.alimentarium.org. Retrieved 2019-05-31.
  7. 1 2 3 4 Schreibman, M.P.; Zarnoch, C. (2009). "Urban aquaculture: Using New York as a model". New Technologies in Aquaculture. pp. 1148–1162. doi:10.1533/9781845696474.6.1148. ISBN   978-1-84569-384-8.
  8. "Aquaculture Systems and Species". www.fao.org. Retrieved 2019-05-31.
  9. "Stress and Physiology" Archived 2011-08-16 at the Wayback Machine By Dr. BiIl Krise at Bozeman Technology Center, and Dr. Gary Wedemeyer at Western Fisheries Research Center. January 2002
  10. 1 2 "Urban Aquatic Production" (PDF). Retrieved 15 May 2019.
  11. "Cape Town innovator creates fish farm in a box". eNCA. Retrieved 2019-05-09.
  12. 1 2 Bueno, Guilherme W.; Ostrensky, Antônio; Canzi, Carla; Matos, Flávia T. de; Roubach, Rodrigo (2015). "Implementation of aquaculture parks in Federal Government waters in Brazil". Reviews in Aquaculture. 7 (1): 1–12. doi:10.1111/raq.12045. ISSN   1753-5131.
  13. 1 2 "4. AQUACULTURE METHODS AND PRACTICES: A SELECTED REVIEW". www.fao.org. Retrieved 2019-05-31.