Wandering cell

Last updated

In anatomy and histology, the term wandering cell (or ameboid cell) [1] is used to describe cells that are found in connective tissue, but are not fixed in place. This term is used occasionally and usually refers to blood leukocytes (which are not fixed and organized in solid tissue) in particular mononuclear phagocytes. Frequently, the term refers to circulating macrophages and has been used also for stationary macrophages fixed in tissues (histiocytes), which are sometimes referred to as "resting wandering cells". [2]

Contents

Connective tissue cells

Connective tissue cells are typically divided into two types, fixed cells and wandering cells. Fibrocytes, or fibroblasts and fat cells(adipocytes) are fixed cells, where as macrophages, monocytes, lymphocytes, plasma cells, eosinophils and mast cells are wandering cells. Fibrocytes are the most common cell type in connective tissues. If fibrocytes are stimulated by damage to the surrounding tissue, the fibrocyte is altered into a fibroblast. The fibroblasts contain organelles that are necessary for the synthesis and excretion of proteins needed to repair the tissue damage. Fibrocytes usually do not leave the connective tissue. Reticular cells are usually larger than fibrocytes. Reticular cells are the fibrocytes of reticular connective tissue and form a network of reticular fibers. Adipocytes are fat cells that are fixed cells in loose connective tissue. Their main function is the storage of lipid. Macrophages arise from monocytes. Monocytes originate in the bone marrow upon which they are released into the blood stream. They are mobile and leave the blood stream to enter connective tissues where they differentiate into macrophages. The fibroblasts are the most important in the connective tissue. Fibroblasts manufacture and maintain the extracellular material. They migrate throughout the extracellular matrix to wherever they are needed. Adipocytes are cells that are very efficient at storing energy in the form of triglycerides. [3]

Types of cells

Macrophages: Supported by a network of connective tissue. Understood as the Reticuloendothelial System, the RES allows microglial differential in the CNS, pulmonary alveolar macrophages, tissue histiocytes, Kupffler Hepatic macrophages, Glomerular Mesangial Proliferation and unnamed Splenic expression of wandering macrophages. Sharing of iron storage remains an essential mystery.

Lymphocytes: These are cells responsible for immune responses that circulate in the blood. Normally, only small numbers are found in the CTs throughout the body. The number increases dramatically at certain sites of tissue inflammation. They are also very numerous in the lamina propria of the respiratory and gastrointestinal tracts, where they are involved in immunosurveillance. The lamina propria is a layer of loose CT lying immediately beneath the epithelium.

Plasma cells: Plasma cells are derived from B-lymphocytes and produce antibodies against a specific antigen. They have a limited migratory ability and a short life.

Neutrophils: Neutrophils are white blood cells that act as phagocytes in the early stages of acute inflammation.

Eosinophils: Eosinophils are white blood cells that are found in the lamina propria of the GI tract, and at sites of allergic reaction and parasitic infection.

Basophils: Basophils are white blood cells that are similar to mast cells in having vasoactive agents released in response to an allergen.

Monocytes: Monocytes are white blood cells that will give rise to all the phagocytes of the mononuclear phagocytic system (see Ross et al., pg. 110, and Table 5.4, pg. 112). In CT, they give rise to macrophages (histiocytes).

Characteristics

Wandering Cells are probably amoeboid when alive but after fixations they are seen to possess a distinct nucleus. These cells are regarded as a special type of blood cell. The cells were found to take up iron saccharate, which had been injected into the hemocoele. The cell's cytoplasm contains a variety of inclusions and characteristically, a well-marked eosinophile area. The wandering cells of nudibranchs are excretory taking up effete matter from the hemocoele and discharging it into the lumen of the gut.

Lymphocytes

Lymphocytes are just one group of cells that function as part of the immune system. More of this group travel around the lymphatic system than in the blood network. Two types of lymphocytes are present in the bloodstream, which are the B cells and the T cells.

B cells are wandering cells that are antibody factories. They are capable of producing molecules that can recognize and bond to specific types of molecules present in infectious organisms or substances that the body identifies as foreign. Every individual B cell makes only one particular type of antibody, specific to only one type of foreign substance. For example, where one cell produces antibody against one of the many viral causes of a cold, another cell's antibodies will ignore the presence of the same virus completely. Normally, the body contains many different B cells, specialized for a specific invader, but only has low levels of each type circulating. When an invader manages to break past other defenses, like the skin or digestive tract into the body, then the circulating B cells that target that particular foreigner multiply up and produce more antibody. Special forms of B cell called plasma cells produce antibodies; little versions of the specialized B cells, called memory B cells, remain stored in lymph glands prepared for the next invasion by the foreigner. Although the products of B cells, the antibodies, stick onto their target invader, they most often do not kill the invader. This job falls to other types of lymphocytes called T cells. There are three different forms of T cells, which are the Helper T cells, the Killer T cells, and the Suppressor T cells.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Lymph node</span> Organ of the lymphatic system

A lymph node, or lymph gland, is a kidney-shaped organ of the lymphatic system and the adaptive immune system. A large number of lymph nodes are linked throughout the body by the lymphatic vessels. They are major sites of lymphocytes that include B and T cells. Lymph nodes are important for the proper functioning of the immune system, acting as filters for foreign particles including cancer cells, but have no detoxification function.

An immune response is a physiological reaction which occurs within an organism in the context of inflammation for the purpose of defending against exogenous factors. These include a wide variety of different toxins, viruses, intra- and extracellular bacteria, protozoa, helminths, and fungi which could cause serious problems to the health of the host organism if not cleared from the body.

<span class="mw-page-title-main">Macrophage</span> Type of white blood cell

Macrophages are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.

<span class="mw-page-title-main">Connective tissue</span> Type of biological tissue in animals

Connective tissue is one of the four primary types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops from the mesenchyme, derived from the mesoderm, the middle embryonic germ layer. Connective tissue is found in between other tissues everywhere in the body, including the nervous system. The three meninges, membranes that envelop the brain and spinal cord, are composed of connective tissue. Most types of connective tissue consists of three main components: elastic and collagen fibers, ground substance, and cells. Blood, and lymph are classed as specialized fluid connective tissues that do not contain fiber. All are immersed in the body water. The cells of connective tissue include fibroblasts, adipocytes, macrophages, mast cells and leucocytes.

<span class="mw-page-title-main">Phagocyte</span> Cells that ingest harmful matter within the body

Phagocytes are cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or dying cells. Their name comes from the Greek phagein, "to eat" or "devour", and "-cyte", the suffix in biology denoting "cell", from the Greek kutos, "hollow vessel". They are essential for fighting infections and for subsequent immunity. Phagocytes are important throughout the animal kingdom and are highly developed within vertebrates. One litre of human blood contains about six billion phagocytes. They were discovered in 1882 by Ilya Ilyich Mechnikov while he was studying starfish larvae. Mechnikov was awarded the 1908 Nobel Prize in Physiology or Medicine for his discovery. Phagocytes occur in many species; some amoebae behave like macrophage phagocytes, which suggests that phagocytes appeared early in the evolution of life.

<span class="mw-page-title-main">Lamina propria</span> Thin connective layer forming part of the mucous membranes

The lamina propria is a thin layer of connective tissue that forms part of the moist linings known as mucous membranes or mucosae, which line various tubes in the body, such as the respiratory tract, the gastrointestinal tract, and the urogenital tract.

In immunology, the mononuclear phagocyte system or mononuclear phagocytic system (MPS) also known as the reticuloendothelial system or macrophage system is a part of the immune system that consists of the phagocytic cells located in reticular connective tissue. The cells are primarily monocytes and macrophages, and they accumulate in lymph nodes and the spleen. The Kupffer cells of the liver and tissue histiocytes are also part of the MPS. The mononuclear phagocyte system and the monocyte macrophage system refer to two different entities, often mistakenly understood as one.

<span class="mw-page-title-main">Loose connective tissue</span> Type of connective tissue in animals

Loose connective tissue, also known as areolar tissue, is a cellular connective tissue with thin and relatively sparse collagen fibers. They have a semi-fluid matrix with lesser proportions of fibers. Its ground substance occupies more volume than the fibers do. It has a viscous to gel-like consistency and plays an important role in the diffusion of oxygen and nutrients from the capillaries that course through this connective tissue as well as in the diffusion of carbon dioxide and metabolic wastes back to the vessels. Moreover, loose connective tissue is primarily located beneath the epithelia that cover the body surfaces and line the internal surfaces of the body. It is also associated with the epithelium of glands and surrounds the smallest blood vessels. This tissue is thus the initial site where pathogenic agents, such as bacteria that have breached an epithelial surface, are challenged and destroyed by cells of the immune system.

<span class="mw-page-title-main">Basement membrane</span> Thin fibrous layer between the cells and the adjacent connective tissue in animals

The basement membrane, also known as base membrane is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and endothelium, and the underlying connective tissue.

A histiocyte is a vertebrate cell that is part of the mononuclear phagocyte system. The mononuclear phagocytic system is part of the organism's immune system. The histiocyte is a tissue macrophage or a dendritic cell. Part of their job is to clear out neutrophils once they've reached the end of their lifespan.

<span class="mw-page-title-main">Agranulocyte</span> One of the two types of white blood cells

In immunology, agranulocytes are one of the two types of leukocytes, the other type being granulocytes. Agranular cells are noted by the absence of granules in their cytoplasm, which distinguishes them from granulocytes. Leukocytes are the first level of protection against disease. The two types of agranulocytes in the blood circulation are lymphocytes and monocytes. These make up about 35% of the hematologic blood values.

Gut-associated lymphoid tissue (GALT) is a component of the mucosa-associated lymphoid tissue (MALT) which works in the immune system to protect the body from invasion in the gut.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

<span class="mw-page-title-main">Red pulp</span> Type of tissue in the spleen

The red pulp of the spleen is composed of connective tissue known also as the cords of Billroth and many splenic sinusoids that are engorged with blood, giving it a red color. Its primary function is to filter the blood of antigens, microorganisms, and defective or worn-out red blood cells.

<span class="mw-page-title-main">CD68</span> Mammalian protein found in Homo sapiens

CD68 is a protein highly expressed by cells in the monocyte lineage, by circulating macrophages, and by tissue macrophages.

A non-specific immune cell is an immune cell that responds to many antigens, not just one antigen. Non-specific immune cells function in the first line of defense against infection or injury. The innate immune system is always present at the site of infection and ready to fight the bacteria; it can also be referred to as the "natural" immune system. The cells of the innate immune system do not have specific responses and respond to each foreign invader using the same mechanism.

<span class="mw-page-title-main">White blood cell</span> Type of cells of the immunological system

White blood cells, also called leukocytes or leucocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells include three main subtypes; granulocytes, lymphocytes and monocytes.

The pluripotency of biological compounds describes the ability of certain substances to produce several distinct biological responses. Pluripotent is also described as something that has no fixed developmental potential, as in being able to differentiate into different cell types in the case of pluripotent stem cells.

<span class="mw-page-title-main">Artificial white blood cells</span> Alternative method of immunotherapy

Artificial white blood cells are typically membrane bound vesicles designed to mimic the immunomodulatory behavior of naturally produced leukocytes. While extensive research has been done with regards to artificial red blood cells and platelets for use in emergency blood transfusions, research into artificial white blood cells has been focused on increasing the immunogenic response within a host to treat cancer or deliver drugs in a more favorable fashion. While certain limitations have prevented leukocyte mimicking particles from becoming widely used and FDA approved, more research is being allocated to this area of synthetic blood which has the potential for producing a new form of treatment for cancer and other diseases.

References

  1. ameboid+cell at eMedicine Dictionary
  2. "Connective Tissue" . Retrieved 2008-11-27.
  3. Nautica2.2Liquid