Yttrium(III) antimonide

Last updated
Yttrium(III) antimonide [1]
NaCl polyhedra.png
Names
IUPAC name
Yttrium(III) antimonide
Other names
yttrium antimonide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.129 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-355-2
PubChem CID
  • InChI=1S/Sb.Y
    Key: LDAAFTDRWLUENA-UHFFFAOYSA-N
  • [Y].[Sb]
Properties
YSb
Molar mass 210.666 g/mol
Appearance cubic crystals
Density 5.97 g/cm3
Melting point 2,310 °C (4,190 °F; 2,580 K)
Structure
cubic, cF8
Fm3m, No. 225
Related compounds
Other anions
Yttrium nitride
Yttrium phosphide
Yttrium(III) arsenide
Other cations
Scandium antimonide
Lutetium antimonide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Yttrium(III) antimonide (Y Sb) is an inorganic chemical compound.

Yttrium antimonide is an intermetallic compound with the chemical formula YSb. It has a NaCl-type structure and is stable in the air. [2] Its thermal expansion coefficient (α, 10−6/°) is 11.1. [3]

It can be produced by the high-temperature reaction of sodium antimonide and anhydrous yttrium chloride: [4]

YCl3 + Na3Sb → YSb + 3 NaCl

Related Research Articles

<span class="mw-page-title-main">Terbium</span> Chemical element, symbol Tb and atomic number 65

Terbium is a chemical element; it has symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

Cyclopropene is an organic compound with the formula C3H4. It is the simplest cycloalkene. Because the ring is highly strained, cyclopropene is difficult to prepare and highly reactive. This colorless gas has been the subject for many fundamental studies of bonding and reactivity. It does not occur naturally, but derivatives are known in some fatty acids. Derivatives of cyclopropene are used commercially to control ripening of some fruit.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.

<span class="mw-page-title-main">Scandium fluoride</span> Chemical compound

Scandium(III) fluoride, ScF3, is an ionic compound. This salt is slightly soluble in water but dissolves in the presence of excess fluoride to form the ScF63− anion.

<span class="mw-page-title-main">Yttrium(III) fluoride</span> Chemical compound

Yttrium(III) fluoride is an inorganic chemical compound with the chemical formula YF3. It is not known naturally in 'pure' form. The fluoride minerals containing essential yttrium include tveitite-(Y) (Y,Na)6Ca6Ca6F42 and gagarinite-(Y) NaCaY(F,Cl)6. Sometimes mineral fluorite contains admixtures of yttrium.

<span class="mw-page-title-main">Yttrium(III) arsenide</span> Chemical compound

Yttrium arsenide is an inorganic compound of yttrium and arsenic with the chemical formula YAs. It can be prepared by reacting yttrium and arsenic at high temperature. Some literature has done research on the eutectic system of it and zinc arsenide.

Aluminium molybdate is the chemical compound Al2(MoO4)3. It forms in certain hydrodesulfurization catalysts when alumina is doped with excess molybdenum. When molybdates are used to inhibit corrosion in aluminum piping, the protective film formed is hydrated aluminum molybdate. Although small quantities of aluminum molybdate form during aluminothermic reduction of molybdia, mechanical activation inhibits their formation.

<span class="mw-page-title-main">Yttrium(III) nitrate</span> Chemical compound

Yttrium(III) nitrate is an inorganic compound, a salt with the formula Y(NO3)3. The hexahydrate is the most common form commercially available.

The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of halocarbonates. In turn these halocarbonates are a part of mixed anion materials.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

Manganese oxalate is a chemical compound, a salt of manganese and oxalic acid with the chemical formula MnC
2
O
4
. The compound creates light pink crystals, does not dissolve in water, and forms crystalline hydrates. It occurs naturally as the mineral Lindbergite.

Phosphide bromides or bromide phosphides are compounds containing anions composed of bromide (Br) and phosphide (P3−) anions. Usually phosphorus is covalently connected into more complex structures. They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, phosphide iodides, nitride bromides, arsenide bromides, and antimonide bromides.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

Antimonide iodides or iodide antimonides are compounds containing anions composed of iodide (I) and antimonide (Sb3−). They can be considered as mixed anion compounds. They are in the category of pnictide halides. Related compounds include the antimonide chlorides, antimonide bromides, phosphide iodides, and arsenide iodides.

<span class="mw-page-title-main">Europium compounds</span> Chemical compounds

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–94, ISBN   0-8493-0594-2
  2. Zhuravlev, N. N.; Smirnova, E. M. X-ray determination of the structure of YBi and YSb. Kristallografiya, 1962. 7: 787-788. ISSN   0023-4761.
  3. Samsonov, G. V.; Abdusalyamova, M. N.; Shokirov, Kh. Thermal expansion of rare earth metal monoantimonides. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1974. 10 (5): 923-924. ISSN   0002-337X.
  4. Jonathan C. Fitzmaurice, Ivan P. Parkin, Adrian T. Rowley (1994). "Metathesis routes to lanthanide pnictides". Journal of Materials Chemistry. 4 (2): 285. doi:10.1039/jm9940400285. ISSN   0959-9428 . Retrieved 2021-09-11.{{cite journal}}: CS1 maint: multiple names: authors list (link)