ASR-9

Last updated
ASR-9
ASR-9 Radar Antenna.jpg
Country of origin United States
Introduced1986 (1986) [1]
Type Airport surveillance radar
Frequency2.7–2.9 Ghz (S band)
PRF 2 CPIs (~1000 Hz)
Pulsewidth1.0 μs
RPM12.5
Azimuth 1.4º
Elevation
Power1.1 MW

ASR-9 is an airport surveillance radar system admitted into the National Airspace System (NAS), to be utilized by the Federal Aviation Administration to monitor civilian and commercial air traffic within the United States. Developed by Westinghouse, ASR-9 was the first radar system to display air traffic, and weather conditions simultaneously. The ASR-9 is mainly intended to monitor and track aircraft below 25,000 ft and within forty to sixty nautical miles from the airport of operation. [1] The ASR radar systems were widely used where an advanced radar system was needed, consisting of 135 different ASR-9 operating locations around the U.S. [2] The FAA is currently working to upgrade the remaining ASR-9 radar sites to a modernized digital version known as the ASR-11.

Contents

Operation

At the time of the ASR-9 installment, the system was a significant improvement over the S-band ASR radars being used by airports. The radar system was designed to meet, or exceed the need of a terminal Air Traffic Control Automation facility through the year 2005. The ASR-9 utilized a dual beam antenna, a dual channel antenna, a linear-wide range receiver and new digital processing equipment. The processor installed on the ASR-9 was far more advanced than processors that had been used on previous models. Some of the major areas that the digital processor was superior to earlier versions, the use of an optimum clutter filter bank, a fine-grained ground mapping threshold and mean level thresholding on the weather bands. Combining all of the upgraded components, the ASR-9 provided a significantly improved ability to detect aircraft in the presence of ground clutter, or weather clutter such as torrential rains. The new and improved processor on the ASR-9 also enhances the ability to detect hazardous weather conditions that could affect flight, landing and take off of various aircraft. A new solid state design and Remote Maintenance Monitoring significantly improved the overall availabilities of the ASR-9, as well as lowering the monthly operation costs. [3]


Design

When Westinghouse first started development of the ASR-9, it was primarily to upgrade the aging ASR-4, -5 and -6 radar equipment at locations that did not receive the previous version, the ASR-8. The ASR-9 monitoring system was formally designated by the FAA to be used as a Primary Radar replacement, as well as a live weather condition monitor utilized from the Air Traffic Control tower. ASR-9 was the first Radar System to enable the detection of a moving target with circular polarization, therefore significantly enhancing the ability to locate aircraft in various weather conditions. In addition to the enhanced detection system, six separate weather channels can be switched on to display the precipitation reflectivity measured from the vertical elevation beam. The measurements taken by the weather system are updated every 30 seconds to increase the accuracy. The Federal Aviation Administration has chosen different 35 sites around the United States to receive a Weather Systems Processor (WSP) upgrade to be added to the existing ASR-9's. This new processor monitored Doppler wind velocity, enabling the detection of low-altitude wind shear around airports. The Weather Systems Processor also improved the ASR-9's accuracy of precipitation reflectivity measurements taken by eliminating the amount of ground clutter picked up by the radar sweeps. The WSP provided a velocity imagery, as well as full resolution reflectivity that extends all the way to the end of the ASR-9's monitor range of sixty nautical miles. The WSP sweep images are updated every 4.8 seconds, with a range of fifteen nautical miles where the processors operate the wind shear algorithms. Launching the upgrade program for the ASR-9's radar processor will ultimately enhance the amount of weather data the computer can process, leading to an even greater weather surveillance range of up to one hundred twenty nautical miles. [4]

Antenna

The antenna used on the ASR-9 was a state of the art horned shaped reflector that forms two cosecant-squared beams to allow high elevation gain, as well as coverage up to forty-two degrees in elevation coverage. The two beams that pulse from the ASR-9 are nearly identical; however, a minimal displacement in height between the two beams causes a coverage change of approximately four degrees elevation. The upper beam on the ASR-9 is used primarily for short range reception, while the lower beam was mainly used for transmitting as well as long range reception. A combination of beam displacement, as well as a sharp underside cut off, gave the ASR-9 a technological advantage when compared to previously installed ASR systems; the radar systems before the ASR-9 had not been able to reject ground clutter when transmitting with the upper beam. [3]

Miscellaneous

Related Research Articles

Radar Object detection system using radio waves

Radar is a detection system that uses radio waves to determine the distance (range), angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the object(s). Radio waves from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Air traffic control A public service provided for the purpose of maintaining the safe and orderly flow of air traffic

Air traffic control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through controlled airspace, and can provide advisory services to aircraft in non-controlled airspace. The primary purpose of ATC worldwide is to prevent collisions, organize and expedite the flow of air traffic, and provide information and other support for pilots. In some countries, ATC plays a security or defensive role, or is operated by the military.

Instrument landing system Ground-based visual aid for landing

In aviation, the instrument landing system (ILS) is a radio navigation system that provides short-range guidance to aircraft to allow them to approach a runway at night or in bad weather. In its original form, it allows an aircraft to approach until it is 200 feet (61 m) over the ground, within a 12 mile of the runway. At that point the runway should be visible to the pilot; if it is not, they perform a missed approach. Bringing the aircraft this close to the runway dramatically improves the weather conditions in which a safe landing can be made. Later versions of the system, or "categories", have further reduced the minimum altitudes.

PAVE PAWS Early warning radar

PAVE PAWS is a complex Cold War early warning radar and computer system developed in 1980 to "detect and characterize a sea-launched ballistic missile attack against the United States". With the first solid-state phased array deployed, the system at the perimeter of the contiguous United States used a pair of Raytheon AN/FPS-115 radar sets at each site as part of the United States Space Surveillance Network. One system was sold to Taiwan and is still in service.

NEXRAD Nationwide network of Doppler weather radars operated by the U.S. National Weather Service

NEXRAD or Nexrad is a network of 160 high-resolution S-band Doppler weather radars operated by the National Weather Service (NWS), an agency of the National Oceanic and Atmospheric Administration (NOAA) within the United States Department of Commerce, the Federal Aviation Administration (FAA) within the Department of Transportation, and the U.S. Air Force within the Department of Defense. Its technical name is WSR-88D.

Microwave landing system

The microwave landing system (MLS) is an all-weather, precision radio guidance system intended to be installed at large airports to assist aircraft in landing, including 'blind landings'. MLS enables an approaching aircraft to determine when it is aligned with the destination runway and on the correct glidepath for a safe landing. MLS was intended to replace or supplement the instrument landing systems (ILS). MLS has a number of operational advantages over ILS, including a wider selection of channels to avoid interference with nearby installations, excellent performance in all weather, a small "footprint" at the airports, and wide vertical and horizontal "capture" angles that allowed approaches from wider areas around the airport.

Secondary surveillance radar Radar system used in air traffic control

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, relies on targets equipped with a radar transponder, that reply to each interrogation signal by transmitting encoded data such as an identity code, the aircraft's altitude and further information depending on its chosen mode. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II, therefore the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.

The Air Route Surveillance Radar is used by the United States Air Force and the Federal Aviation Administration to control airspace within and around the borders of the United States.

Transponder landing system

A transponder landing system (TLS) is an all-weather, precision landing system that uses existing airborne transponder and instrument landing system (ILS) equipment to create a precision approach at a location where an ILS would normally not be available.

AN/FPS-117

The AN/FPS-117 is an L-band active electronically scanned array (AESA) 3-dimensional air search radar first produced by GE Aerospace in 1980 and now part of Lockheed Martin. The system offers instrumented detection at ranges on the order of 200 to 250 nautical miles and has a wide variety of interference and clutter rejection systems.

Airport surveillance radar Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

The JY-9 Radar is a mobile S-band low altitude search radar intended for use in air defense, gap filling, airport surveillance and coastal defense. It is designed for effective detection of targets at low altitude in both ECM and natural clutter environments. The general designer of JY-9 is the head of 38th Research Institute, academician of Chinese Academy of Sciences Mr. Wu Manqing, who is also the general designer of JY-8 and the general designer of the radar systems for KJ-2000 and KJ-200.

In aviation a ground-controlled approach (GCA), is a type of service provided by air-traffic controllers whereby they guide aircraft to a safe landing, including in adverse weather conditions, based on primary radar images. Most commonly a GCA uses information from either a Precision Approach Radar or an Airport Surveillance Radar. The term GCA may refer to any type of ground radar guided approach such as a PAR, PAR without glideslope or ASR. When both vertical and horizontal guidance from the PAR is given, the approach is termed a precision approach. If no PAR glidepath is given, even if PAR equipment is used for lateral guidance, it is considered a non-precision approach.

Low-level windshear alert system

A low-level windshear alert system (LLWAS) measures average surface wind speed and direction using a network of remote sensor stations, situated near runways and along approach or departure corridors at an airport. Wind shear is the generic term for wind differences over an operationally short distance which encompass meteorological phenomena including gust fronts, microbursts, vertical shear, and derechos.

ASR-11 is a Digital Airport Surveillance Radar (DASR,) an advanced radar system utilized by the United States as the next generation of terminal air traffic control. The ASR-11 is an upgraded, advanced version of the previous ASR-9 radar. This next generation radar system has been developed through a joint effort by the Federal Aviation Administration, the Department of Defense and the United States Air Force, who took most of the lead development tasks.

Automatic Dependent Surveillance–Broadcast Aircraft surveillance technology

Automatic Dependent Surveillance–Broadcast (ADS–B) is a surveillance technology in which an aircraft determines its position via satellite navigation or other sensors and periodically broadcasts it, enabling it to be tracked. The information can be received by air traffic control ground stations as a replacement for secondary surveillance radar, as no interrogation signal is needed from the ground. It can also be received by other aircraft to provide situational awareness and allow self-separation. ADS–B is "automatic" in that it requires no pilot or external input. It is "dependent" in that it depends on data from the aircraft's navigation system.

The AN/MPN is a mobile Ground-controlled approach radar first used during World War II. "MPN" is Joint Electronics Type Designation System nomenclature for (Ground) Mobile (M), Pulsed (P), Navigation aid (N).

Terminal Doppler Weather Radar

Terminal Doppler Weather Radar (TDWR) is a Doppler weather radar system with a three-dimensional "pencil beam" used primarily for the detection of hazardous wind shear conditions, precipitation, and winds aloft on and near major airports situated in climates with great exposure to thunderstorms in the United States. As of 2011, all were in-service with 45 operational radars, some covering multiple airports in major metropolitan locations, across the United States & Puerto Rico. Several similar weather radars have also been sold to other countries such as China. Funded by the United States Federal Aviation Administration (FAA), TDWR technology was developed in the early 1990s at Lincoln Laboratory, part of the Massachusetts Institute of Technology, to assist air traffic controllers by providing real-time wind shear detection and high-resolution precipitation data.

Anchorage Air Route Traffic Control Center

Anchorage Air Route Traffic Control Center (PAZA/ZAN) is located just outside the main gate of Joint Base Elmendorf-Richardson at 700 North Boniface Parkway in Anchorage, Alaska, United States. The Anchorage ARTCC is one of 22 Air Route Traffic Control Centers in the United States.

Multifunction Phased Array Radar

Multifunction Phased Array Radar (MPAR) was an experimental Doppler radar system that utilized phased array technology. MPAR could scan at angles as high as 60 degrees in elevation, and simultaneously track meteorological phenomena, biological flyers, non-cooperative aircraft, and air traffic. From 2003 through 2016, there was one operational MPAR within the mainland United States—a repurposed AN/SPY-1A radar set loaned to NOAA by the U.S. Navy. The MPAR was decommissioned and removed in 2016.

References

  1. 1 2 Taylor, John W. (2 February 1985). "Design of a New Airport Surveillance Radar (ASR-9)". Proceedings of the IEEE. 73 (2): 284–289. doi:10.1109/PROC.1985.13139.
  2. Wolff, Christian. "Airfield Surveillance Radar". radartutorial.eu. Retrieved 4 April 2017.
  3. 1 2 AIRPORT SURVEILLANCE RADAR REPLACEMENT PROGRAM. DEPARTMENT OF TRANSPORTATION;FEDERAL AVIATION ADMINISTRATION. 14 May 1984. p. 10.
  4. Weber, Mark (12 April 2000). "FAA SURVEILLANCE RADAR DATA" (PDF). Massachusetts Institute of Technology. Retrieved 26 April 2017.
  5. 1 2 3 Airport Surveillance Radar (ASR) Replacement Program. Federal Aviation Administration/Department of Transportation. 14 May 1984. p. 5.