ASTRA (reactor)

Last updated

ASTRA (Adaptierter Schwimmbecken-Typ-Reaktor Austria, english translation: Adapted swimming pool-type reactor Austria) was a type of nuclear research reactor built in Seibersdorf, Austria near Vienna, at the site of the former Austrian Reactor Center Seibersdorf which now forms part of the Austrian Institute of Technology (AIT). ASTRA operated from 1960 to 1999.

Contents

Timeline

September 1960100kW (initial criticality)
May 19621MW
August 19625MW
August 19696MW
19727MW
January 19758MW
~19899.5MW
1999decommissioned

Research

One of the most advanced experiments in physics carried out at the ASTRA reactor was an experiment on the decay of free neutrons. [1] In this experiment, the electron-neutrino angular correlation in free neutron decay was measured via the shape of the energy spectrum of the recoil protons; the center of a highly evacuated tangential beam tube of the reactor served as neutron source.

The aim was to determine the ratio of the two coupling constants gA and gV of the weak interaction from the shape of the recoil proton spectrum. This spectrum was measured using an electrostatic spectrometer; the protons were counted using an ion electron converter of the coincidence type.

The result was [2] |gA/gV| = 1.259 ± 0.017. This is in good agreement with the later (much more accurate) average [3] gA/gV = - 1.2695 ± 0.0029; this value was measured using polarised neutrons and hence contains also the sign of the ratio.

Literature

Related Research Articles

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Muon</span> Subatomic particle

A muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has a neutral charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one dalton, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei).

<span class="mw-page-title-main">Cowan–Reines neutrino experiment</span> Institute of Technology Experimental confirmation of neutrinos

The Cowan–Reines neutrino experiment was conducted by physicists Clyde Cowan and Frederick Reines in 1956. The experiment confirmed the existence of neutrinos. Neutrinos, subatomic particles with no electric charge and very small mass, had been conjectured to be an essential particle in beta decay processes in the 1930s. With neither mass nor charge, such particles appeared to be impossible to detect. The experiment exploited a huge flux of electron antineutrinos emanating from a nearby nuclear reactor and a detector consisting of large tanks of water. Neutrino interactions with the protons of the water were observed, verifying the existence and basic properties of this particle for the first time.

<span class="mw-page-title-main">Double beta decay</span> Type of radioactive decay

In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.

Pran Nath is a theoretical physicist working at Northeastern University, with research focus in elementary particle physics. He holds a Matthews Distinguished University Professor chair.

In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as
ρ+
,
ρ0
and
ρ
. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the pions and kaons, the rho mesons are the lightest strongly interacting particle, with a mass of 775.45±0.04 MeV for all three states.

Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos. The IBD reaction can only be used to detect antineutrinos due to lepton conservation.

Delbrück scattering, the deflection of high-energy photons in the Coulomb field of nuclei as a consequence of vacuum polarization, was observed in 1975. The related process of the scattering of light by light, also a consequence of vacuum polarization, was not observed until 1998. In both cases, it is a process described by quantum electrodynamics.

<span class="mw-page-title-main">Francisco José Ynduráin</span> Spanish physicist (1940–2008)

Francisco José Ynduráin Muñoz was a Spanish theoretical physicist. He founded the particle physics research group that became the Department of Theoretical Physics at the Autonomous University of Madrid, where he was a Professor. He was described by his colleagues as "a scientist that always searched for excellence in research".

<span class="mw-page-title-main">Borexino</span> Neutrino physics experiment in Italy

Borexino is a deep underground particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter and is protected by 3,800 meters of water-equivalent depth. The scintillator is pseudocumene and PPO which is held in place by a thin nylon sphere. It is placed within a stainless steel sphere which holds the photomultiplier tubes (PMTs) used as signal detectors and is shielded by a water tank to protect it against external radiation. Outward pointing PMT's look for any outward facing light flashes to tag incoming cosmic muons that manage to penetrate the overburden of the mountain above. Neutrino energy can be determined through the number of photoelectrons measured in the PMT's. While the position can be determined by extrapolating the difference in arrival times of photons at PMT's throughout the chamber.

<span class="mw-page-title-main">Anthony Ichiro Sanda</span> Japanese-American particle physicist (born 1944)

Anthony Ichiro Sanda is a Japanese-American particle physicist. Along with Ikaros Bigi, he was awarded the 2004 Sakurai Prize for his work on CP violation and B meson decays.

Standard-Model Extension (SME) is an effective field theory that contains the Standard Model, general relativity, and all possible operators that break Lorentz symmetry. Violations of this fundamental symmetry can be studied within this general framework. CPT violation implies the breaking of Lorentz symmetry, and the SME includes operators that both break and preserve CPT symmetry.

The photon structure function, in quantum field theory, describes the quark content of the photon. While the photon is a massless boson, through certain processes its energy can be converted into the mass of massive fermions. The function is defined by the process e + γ → e + hadrons. It is uniquely characterized by the linear increase in the logarithm of the electronic momentum transfer logQ2 and by the approximately linear rise in x, the fraction of the quark momenta within the photon. These characteristics are borne out by the experimental analyses of the photon structure function.

<span class="mw-page-title-main">Helmut Paul</span> Austrian physicist

Helmut Paul was an Austrian nuclear and atomic physicist. He taught as a full professor of experimental physics at the University of Linz from 1971 to 1996. Since then he was professor emeritus. He was Rector of the University from 1974 to 1977.

<span class="mw-page-title-main">Asoke Nath Mitra</span> Indian theoretical physicist (born 1929)

Asoke Nath Mitra was an Indian theoretical physicist. He was a lifetime professor emeritus at Delhi University. He is known for his work in nuclear physics, particle physics and quantum field theory and in particular, for his fundamental contributions in obtaining the exact solution of the nucleon 3- body problem with separable potentials which led to the few nucleon studies, quark-recoil effect, development of an integrated dynamics of 2- and 3- body systems from nucleons to quarks as well as for the development of quark dynamics and relativistic quark models for hadrons in the Bethe-Salpeter framework. He was awarded the Shanti Swarup Bhatnagar Prize in 1969.

The diffuse supernova neutrino background(DSNB) is a theoretical population of neutrinos (and anti-neutrinos) cumulatively originating from all core-collapse supernovae events throughout the history of the universe. Though it has not yet been directly detected, the DSNB is theorized to be isotropic and consists of neutrinos with typical energies on the scale of 107 eV. Current detection efforts are limited by the influence of background noise in the search for DSNB neutrinos and are therefore limited to placing limits on the parameters of the DSNB, namely the neutrino flux. Restrictions on these parameters have gotten more strict in recent years, but many researchers are looking to make direct observations in the near future with next generation detectors. The DSNB is not to be confused with the cosmic neutrino background (CNB), which is comprised by relic neutrinos that were produced during the Big Bang and have much lower energies (10−4 to 10−6 eV).

The STEREO experiment investigates the possible oscillation of neutrinos from a nuclear reactor into light so-called sterile neutrinos. It is located at the Institut Laue–Langevin (ILL) in Grenoble, France. The experiment started operating and taking data in November 2016.

References

  1. Dobrozemsky, R.; Kerschbaum, E.; Moraw, G.; Paul, H.; Stratowa, C.; Weinzierl, P. (1975-02-01). "Electron-neutrino angular correlation coefficientameasured from free-neutron decay". Physical Review D. American Physical Society (APS). 11 (3): 510–512. doi:10.1103/physrevd.11.510. ISSN   0556-2821.
  2. Stratowa, Chr.; Dobrozemsky, R.; Weinzierl, P. (1978-12-01). "Ratio derived from the proton spectrum in free-neutron decay". Physical Review D. American Physical Society (APS). 18 (11): 3970–3979. doi:10.1103/physrevd.18.3970. ISSN   0556-2821.
  3. Beringer, J.; Arguin, J. -F.; Barnett, R. M.; Copic, K.; Dahl, O.; et al. (Particle Data Group) (2012-07-20). "Review of Particle Physics". Physical Review D. American Physical Society (APS). 86 (1): 0100001. doi: 10.1103/physrevd.86.010001 . ISSN   1550-7998.




47°57′34″N16°30′57″E / 47.9594°N 16.51584°E / 47.9594; 16.51584