Abox

Last updated

In computer science, the terms TBox and ABox are used to describe two different types of statements in knowledge bases. TBox statements are the "terminology component", and describe a domain of interest by defining classes and properties as a domain vocabulary. ABox statements are the "assertion component" — facts associated with the TBox's conceptual model or ontologies. [1] Together ABox and TBox statements make up a knowledge base or a knowledge graph.

Contents

ABox statements must be TBox-compliant: they are assertions that use the vocabulary defined by the TBox.

TBox statements are sometimes associated with object-oriented classes and ABox statements associated with instances of those classes.

Examples of ABox and TBox statements

ABox statements typically deal with concrete entities. They specify what category an entity belongs to, or what relation one entity has to another entity.

Examples:

TBox statements typically (or definitions of domain categories and implied relations) such as:

TBox statements tend to be more permanent within a knowledge base and are used and stored as a schema or a data model. In contrast, ABox statements are much more dynamic in nature and tend to be stored as instance data within transactional systems within databases. With the newer, NoSQL databases and especially with RDF databases (see Triplestore) the storage distinction may no longer apply. Data and models can be stored using the same approach. However, models continue to be more permanent, have a different lifecycle and are typically stored as separate graphs within such database.

See also

Related Research Articles

<span class="mw-page-title-main">Semantic Web</span> Extension of the Web to facilitate data exchange

The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable.

In information science, an ontology encompasses a representation, formal naming, and definitions of the categories, properties, and relations between the concepts, data, or entities that pertain to one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of terms and relational expressions that represent the entities in that subject area. The field which studies ontologies so conceived is sometimes referred to as applied ontology.

The Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) standard originally designed as a data model for metadata. It has come to be used as a general method for description and exchange of graph data. RDF provides a variety of syntax notations and data serialization formats, with Turtle currently being the most widely used notation.

Description logics (DL) are a family of formal knowledge representation languages. Many DLs are more expressive than propositional logic but less expressive than first-order logic. In contrast to the latter, the core reasoning problems for DLs are (usually) decidable, and efficient decision procedures have been designed and implemented for these problems. There are general, spatial, temporal, spatiotemporal, and fuzzy description logics, and each description logic features a different balance between expressive power and reasoning complexity by supporting different sets of mathematical constructors.

Reification is the process by which an abstract idea about a computer program is turned into an explicit data model or other object created in a programming language. A computable/addressable object—a resource—is created in a system as a proxy for a non computable/addressable object. By means of reification, something that was previously implicit, unexpressed, and possibly inexpressible is explicitly formulated and made available to conceptual manipulation. Informally, reification is often referred to as "making something a first-class citizen" within the scope of a particular system. Some aspect of a system can be reified at language design time, which is related to reflection in programming languages. It can be applied as a stepwise refinement at system design time. Reification is one of the most frequently used techniques of conceptual analysis and knowledge representation.

The Web Ontology Language (OWL) is a family of knowledge representation languages for authoring ontologies. Ontologies are a formal way to describe taxonomies and classification networks, essentially defining the structure of knowledge for various domains: the nouns representing classes of objects and the verbs representing relations between the objects.

<span class="mw-page-title-main">Entity–relationship model</span> Model or diagram describing interrelated things

An entity–relationship model describes interrelated things of interest in a specific domain of knowledge. A basic ER model is composed of entity types and specifies relationships that can exist between entities.

<span class="mw-page-title-main">Metamodeling</span> Concept of software engineering

A metamodel is a model of a model, and metamodeling is the process of generating such metamodels. Thus metamodeling or meta-modeling is the analysis, construction and development of the frames, rules, constraints, models and theories applicable and useful for modeling a predefined class of problems. As its name implies, this concept applies the notions of meta- and modeling in software engineering and systems engineering. Metamodels are of many types and have diverse applications.

RDF Schema (Resource Description Framework Schema, variously abbreviated as RDFS, RDF(S), RDF-S, or RDF/S) is a set of classes with certain properties using the RDF extensible knowledge representation data model, providing basic elements for the description of ontologies. It uses various forms of RDF vocabularies, intended to structure RDF resources. RDF and RDFS can be saved in a triplestore, then one can extract some knowledge from them using a query language, like SPARQL.

<span class="mw-page-title-main">IDEF1X</span>

Integration DEFinition for information modeling (IDEF1X) is a data modeling language for the development of semantic data models. IDEF1X is used to produce a graphical information model which represents the structure and semantics of information within an environment or system.

In information science, an upper ontology is an ontology that consists of very general terms that are common across all domains. An important function of an upper ontology is to support broad semantic interoperability among a large number of domain-specific ontologies by providing a common starting point for the formulation of definitions. Terms in the domain ontology are ranked under the terms in the upper ontology, e.g., the upper ontology classes are superclasses or supersets of all the classes in the domain ontologies.

Semantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information, documents of all sorts, contacts, search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.

Ontology-based data integration involves the use of one or more ontologies to effectively combine data or information from multiple heterogeneous sources. It is one of the multiple data integration approaches and may be classified as Global-As-View (GAV). The effectiveness of ontology‑based data integration is closely tied to the consistency and expressivity of the ontology used in the integration process.

In digital lexicography, natural language processing, and digital humanities, a lexical resource is a language resource consisting of data regarding the lexemes of the lexicon of one or more languages e.g., in the form of a database.

<span class="mw-page-title-main">IDEF5</span>

IDEF5 is a software engineering method to develop and maintain usable, accurate domain ontologies. This standard is part of the IDEF family of modeling languages in the field of software engineering.

<span class="mw-page-title-main">Ontology engineering</span> Field that studies the methods and methodologies for building ontologies

In computer science, information science and systems engineering, ontology engineering is a field which studies the methods and methodologies for building ontologies, which encompasses a representation, formal naming and definition of the categories, properties and relations between the concepts, data and entities of a given domain of interest. In a broader sense, this field also includes a knowledge construction of the domain using formal ontology representations such as OWL/RDF. A large-scale representation of abstract concepts such as actions, time, physical objects and beliefs would be an example of ontological engineering. Ontology engineering is one of the areas of applied ontology, and can be seen as an application of philosophical ontology. Core ideas and objectives of ontology engineering are also central in conceptual modeling.

Contemporary ontologies share many structural similarities, regardless of the ontology language in which they are expressed. Most ontologies describe individuals (instances), classes (concepts), attributes, and relations.

Knowledge extraction is the creation of knowledge from structured and unstructured sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL, the main criterion is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge or the generation of a schema based on the source data.

A semantic triple, or RDF triple or simply triple, is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a sequence of three entities that codifies a statement about semantic data in the form of subject–predicate–object expressions.

<span class="mw-page-title-main">Knowledge graph</span> Type of knowledge base

In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the semantics or relationships underlying these entities.

References

  1. Gruber, Thomas R. (June 1993). "A translation approach to portable ontology specifications" (PDF). Knowledge Acquisition . 5 (2): 199–220. CiteSeerX   10.1.1.101.7493 . doi:10.1006/knac.1993.1008.