Absorption of water

Last updated

In higher plants water and minerals are absorbed through root hairs which are in contact with soil water and from the root hairs zone a little the root tips.

Contents

Pleopeltis polypodioides absorbing water through the leaves

Active absorption

Active absorption refers to the absorption of water by roots with the help of adenosine triphosphate, generated by the root respiration: as the root cells actively take part in the process, it is called active absorption. According to Jenner, active absorption takes place in low transpiring and well-watered plants, and 4% of total water absorption is carried out in this process. The active absorption is carried out by two theories; active osmotic water absorption and Active non-osmotic water absorption. In this process, energy is not required. Active absorption is important for the plants.

Active osmotic water absorption

The root cells behave as an ideal osmotic pressure system through which water moves up from the soil solution to the root xylem along an increasing gradient of D.P.D. (suction pressure, which is the real force for water absorption). If the solute concentration is high and water potential is low in the root cells, water can enter from soil to root cells through endosmosis. Mineral nutrients are absorbed actively by the root cells due to utilisation of adenosine triphosphate (ATP). As a result, the concentration of ions (osmotica) in the xylem vessels is more in comparison to the soil water. A concentration gradient is established between the root and the soil water. The solute potential of xylem water is more in comparison to that of soil and correspondingly water potential is low than the soil water. If stated, water potential is comparatively positive in the soil water. This gradient of water potential causes endosmosis. The endosmosis of water continues until the water potential both in the root and soil becomes equal. It is the absorption of minerals that utilise metabolic energy, but not water absorption. Hence, the absorption of water is indirectly an active process in a plant's life. Active transport is in an opposite direction to that of diffusion. [1]

Active non-osmotic water absorption

Sometimes water is absorbed against a concentration gradient. This requires the expenditure of metabolic energy released from the respiration of root cells. There is no direct evidence, but some scientists suggest the involvement of energy from respiration. In conclusion, it is said that the evidence supporting active absorption of water are themselves poor.

This mechanism is carried out without utilisation of metabolic energy. Here, only the roots act as an organ of absorption or passage. Hence, sometimes it is called water absorption 'through roots', rather than 'by' roots. It occurs in rapidly transpiring plants during the daytime, because of the opening of stomata and the atmospheric conditions. The force for absorption of water is created at the leaf end i.e. the transpiration pull. The main cause behind this transpiration pull, water is lifted up in the plant axis like a bucket of water is lifted by a person from a well. Transpiration pull is responsible for dragging water at the leaf end, the pull or force is transmitted down to the root through column of water in the xylem elements. The continuity of the water column remains intact due to the cohesion between the molecules and it acts as a rope. Roots simply act as a passive organ of absorption. As transpiration proceeds, water absorption occurs simultaneously to compensate the water loss from the leaf end. Most volume of water entering plants is by means of passive absorption. Passive transport is no different from diffusion, it requires no input of energy: there is free movement of molecules from their higher concentration to their lower concentration. The water will enter the plant via the root cells that can be found in the roots where mainly passive absorption occurs. Also, with the absorption of water, minerals and nutrients are also absorbed.

See also

Related Research Articles

<span class="mw-page-title-main">Xylem</span> Water transport tissue in vascular plants

Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word xylem is derived from the Ancient Greek word ξύλον (xylon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. The term was introduced by Carl Nägeli in 1858.

<span class="mw-page-title-main">Vascular plant</span> Clade of land plants with xylem and phloem

Vascular plants, also called tracheophytes or collectively Tracheophyta, form a large group of land plants that have lignified tissues for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue to conduct products of photosynthesis. Vascular plants include the clubmosses, horsetails, ferns, gymnosperms, and angiosperms. Scientific names for the group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones.

<span class="mw-page-title-main">Root pressure</span> Transverse osmotic pressure within the cells of a root system

Root pressure is the transverse osmotic pressure within the cells of a root system that causes sap to rise through a plant stem to the leaves.

<span class="mw-page-title-main">Guttation</span>

Guttation is the exudation of drops of xylem sap on the tips or edges of leaves of some vascular plants, such as grasses, and a number of fungi, which are not plants but were previously categorized as such and studied as part of botany.

<span class="mw-page-title-main">Excretion</span> Elimination by an organism of metabolic waste products

Excretion is a process in which metabolic waste is eliminated from an organism. In vertebrates this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after leaving the cell. Excretion is an essential process in all forms of life. For example, in mammals, urine is expelled through the urethra, which is part of the excretory system. In unicellular organisms, waste products are discharged directly through the surface of the cell.

<span class="mw-page-title-main">Passive transport</span> Transport that does not require energy

Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to one of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig’s law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action. The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on in situ probes or remote sensing methods.

In the life sciences, mass flow, also known as mass transfer and bulk flow, is the movement of fluids down a pressure or temperature gradient. As such, mass flow is a subject of study in both fluid dynamics and biology. Examples of mass flow include blood circulation and transport of water in vascular plant tissues. Mass flow is not to be confused with diffusion which depends on concentration gradients within a medium rather than pressure gradients of the medium itself.

<span class="mw-page-title-main">Transpiration stream</span>

In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/apoplast-interface of the substomatal cavity. It is driven by capillary action and in some plants by root pressure. The main driving factor is the difference in water potential between the soil and the substomatal cavity caused by transpiration.

In plants and animals, mineral absorption, also called mineral uptake is the way in which minerals enter the cellular material, typically following the same pathway as water. In plants, the entrance portal for mineral uptake is usually through the roots. Some mineral ions diffuse in-between the cells. In contrast to water, some minerals are actively taken up by plant cells. Mineral nutrient concentration in roots may be 10,000 times more than in surrounding soil. During transport throughout a plant, minerals can exit xylem and enter cells that require them. Mineral ions cross plasma membranes by a chemiosmotic mechanism. Plants absorb minerals in ionic form: nitrate (NO3), phosphate (HPO4) and potassium ions (K+); all have difficulty crossing a charged plasma membrane.

<span class="mw-page-title-main">Soil-plant-atmosphere continuum</span>

The soil-plant-atmosphere continuum (SPAC) is the pathway for water moving from soil through plants to the atmosphere. Continuum in the description highlights the continuous nature of water connection through the pathway. The low water potential of the atmosphere, and relatively higher water potential inside leaves, leads to a diffusion gradient across the stomatal pores of leaves, drawing water out of the leaves as vapour. As water vapour transpires out of the leaf, further water molecules evaporate off the surface of mesophyll cells to replace the lost molecules since water in the air inside leaves is maintained at saturation vapour pressure. Water lost at the surface of cells is replaced by water from the xylem, which due to the cohesion-tension properties of water in the xylem of plants pulls additional water molecules through the xylem from the roots toward the leaf.

Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.

The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem. It was proposed by Ernst Münch, a German plant physiologist in 1930. A high concentration of organic substances, particularly sugar, inside cells of the phloem at a source, such as a leaf, creates a diffusion gradient that draws water into the cells from the adjacent xylem. This creates turgor pressure, also known as hydrostatic pressure, in the phloem. Movement of phloem sap occurs by bulk flow from sugar sources to sugar sinks. The movement in phloem is bidirectional, whereas, in xylem cells, it is unidirectional (upward). Because of this multi-directional flow, coupled with the fact that sap cannot move with ease between adjacent sieve-tubes, it is not unusual for sap in adjacent sieve-tubes to be flowing in opposite directions.

Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes to keep the body fluids from becoming too diluted or concentrated. Osmotic pressure is a measure of the tendency of water to move into one solution from another by osmosis. The higher the osmotic pressure of a solution, the more water tends to move into it. Pressure must be exerted on the hypertonic side of a selectively permeable membrane to prevent diffusion of water by osmosis from the side containing pure water.

<span class="mw-page-title-main">Transpiration</span> Process of water moving through a plant parts

Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation. Leaf surfaces are dotted with pores called stomata, and in most plants they are more numerous on the undersides of the foliage. The stomata are bordered by guard cells and their stomatal accessory cells that open and close the pore. Transpiration occurs through the stomatal apertures, and can be thought of as a necessary "cost" associated with the opening of the stomata to allow the diffusion of carbon dioxide gas from the air for photosynthesis. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients and water from roots to shoots. Two major factors influence the rate of water flow from the soil to the roots: the hydraulic conductivity of the soil and the magnitude of the pressure gradient through the soil. Both of these factors influence the rate of bulk flow of water moving from the roots to the stomatal pores in the leaves via the xylem.

<span class="mw-page-title-main">Fertilizer burn</span> Plant disease caused by excess fertilizer concentration

Fertilizer burns occur when the use of too much fertilizer, the wrong type of fertilizer, or too little water with a fertilizer causes damage to a plant. Although fertilizer is used to help a plant grow by providing nutrients, too much will result in excess salt, nitrogen, or ammonia which have adverse effects on a plant. An excess of these nutrients can damage the plant's ability to photosynthesize and cellularly respire, causing visible burns. The intensity of burns determine the strategy for recovery.

Stomatal conductance, usually measured in mmol m−2 s−1 by a porometer, estimates the rate of gas exchange and transpiration through the leaf stomata as determined by the degree of stomatal aperture.

Hydraulic signals in plants are detected as changes in the organism's water potential that are caused by environmental stress like drought or wounding. The cohesion and tension properties of water allow for these water potential changes to be transmitted throughout the plant.

References

  1. Arya, R.L.; Arya, R.; Arya, S.; Kumar, J. (2015). Fundamentals Of Agriculture (Icar-Net, Jrf, Srf, Csir-Net, Upsc & Ifs). Scientific Publishers. p. 162.
  1. http://www.tutorvista.com/content/biology/biology-iv/plant-water-relations/absorption-water-by-plants.php
  2. DOI.org
  3. https://www.jstor.org/stable/4353618
  4. https://web.archive.org/web/20110114111737/http://www.wiziq.com/tutorial/70692-Biology-XI-11-Transport-in-plants-4-Mechanism-of-Water-Absorption

Absorption of water-Plants generally absorb capillary water from the soil through their roots. The diffusion pressure deficit in a cell of a leaf is developed because of transpiration then water from the adjacent cell moves towards the cell in the same way diffusion pressure deficit is developed in the second cell and water moves to it from the adjacent cell. This way a continuous diffusion pressure deficit is extended up to root hair and a suction force is developed.