Maintenance respiration

Last updated

Maintenance respiration (or maintenance energy) refers to metabolism occurring in an organism that is needed to maintain that organism in a healthy, living state. Maintenance respiration contrasts with growth respiration, which is responsible for the synthesis of new structures in growth, nutrient uptake, nitrogen (N) reduction and phloem loading, whereas maintenance respiration is associated with protein and membrane turnover and maintenance of ion concentrations and gradients. [1]

In plants

Maintenance respiration in plants refers to the amount of cellular respiration, measured by the carbon dioxide (CO2) released or oxygen (O2) consumed, during the generation of usable energy (mainly ATP, NADPH, and NADH) and metabolic intermediates used for (i) resynthesis of compounds that undergo renewal (turnover) in the normal process of metabolism (examples are enzymatic proteins, ribonucleic acids, and membrane lipids); (ii) maintenance of chemical gradients of ions and metabolites across cellular membranes that are necessary for cellular integrity and plant health; and (iii) operation of metabolic processes involved in physiological adjustment (i.e., acclimation) to a change in the plant's environment. [2] [3] [4] The metabolic costs of the repair of injury from biotic or abiotic stress may also be considered a part of maintenance respiration. [2]

Maintenance respiration is essential for biological health and growth of plants. It is estimated that about half of the respiration carried out by terrestrial plants during their lifetime is for the support of maintenance processes. [5] Because typically more than half of global terrestrial plant photosynthesis (or gross primary production) is used for plant respiration, [4] more than one quarter of global terrestrial plant photosynthesis is presumably consumed in maintenance respiration.

Maintenance respiration is a key component of most physiologically based mathematical models of plant growth, including models of crop growth and yield and models of ecosystem primary production and carbon balance. [6] [7] [8]

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in carbohydrate molecules, such as sugars and starches, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek phōs, "light", and synthesis, "putting together". Most plants, algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the energy necessary for life on Earth.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products.

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient.

<span class="mw-page-title-main">Potassium deficiency (plants)</span> Plant disorder

Potassium deficiency, also known as potash deficiency, is a plant disorder that is most common on light, sandy soils, because potassium ions (K+) are highly soluble and will easily leach from soils without colloids. Potassium deficiency is also common in chalky or peaty soils with a low clay content. It is also found on heavy clays with a poor structure.

<span class="mw-page-title-main">Primary production</span> Synthesis of organic compounds from carbon dioxide by biological organisms

In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through chemosynthesis, which uses the oxidation or reduction of inorganic chemical compounds as its source of energy. Almost all life on Earth relies directly or indirectly on primary production. The organisms responsible for primary production are known as primary producers or autotrophs, and form the base of the food chain. In terrestrial ecoregions, these are mainly plants, while in aquatic ecoregions algae predominate in this role. Ecologists distinguish primary production as either net or gross, the former accounting for losses to processes such as cellular respiration, the latter not.

<span class="mw-page-title-main">Excretion</span> Elimination by an organism of metabolic waste products

Excretion is a process in which metabolic waste is eliminated from an organism. In vertebrates this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after leaving the cell. Excretion is an essential process in all forms of life. For example, in mammals, urine is expelled through the urethra, which is part of the excretory system. In unicellular organisms, waste products are discharged directly through the surface of the cell.

<span class="mw-page-title-main">Energy flow (ecology)</span> Flow of energy through food chains in ecological energetics

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

<span class="mw-page-title-main">Magnesium in biology</span> Use of Magnesium by organisms

Magnesium is an essential element in biological systems. Magnesium occurs typically as the Mg2+ ion. It is an essential mineral nutrient (i.e., element) for life and is present in every cell type in every organism. For example, adenosine triphosphate (ATP), the main source of energy in cells, must bind to a magnesium ion in order to be biologically active. What is called ATP is often actually Mg-ATP. As such, magnesium plays a role in the stability of all polyphosphate compounds in the cells, including those associated with the synthesis of DNA and RNA.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig’s law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. A continuous flux of mass and energy results in the constant synthesis and breakdown of molecules via chemical reactions of biochemical pathways. Essentially, steady state can be thought of as homeostasis at a cellular level.

<span class="mw-page-title-main">Outline of biochemistry</span> Overview of and topical guide to biochemistry

The following outline is provided as an overview of and topical guide to biochemistry:

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Dynamic reserve, in the context of the dynamic energy budget theory, refers to the set of metabolites that an organism can use for metabolic purposes. These chemical compounds can have active metabolic functions, however. They are not just "set apart for later use." Reserve differs from structure in the first place by its dynamics. Reserve has an implied turnover, because it is synthesized from food and used by metabolic processes occurring in cells. The turnover of structure depends on the maintenance of an organism. Maintenance is not required for reserve. A freshly laid egg consists almost exclusively of reserve, and hardly respires. The chemical compounds in the reserve have the same turnover, while that in the structure can have a different turnover, and so it depends on the compound.

Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

Dioxygen plays an important role in the energy metabolism of living organisms. Free oxygen is produced in the biosphere through photolysis of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.

A xerophyte is a species of plant that has adaptations to survive in an environment with little liquid water, such as a desert such as the Sahara or places in the Alps or the Arctic. Popular examples of xerophytes are cacti, pineapple and some Gymnosperm plants.

<span class="mw-page-title-main">Ecosystem respiration</span> The oxidation of organic compounds by organisms in an ecosystem

Ecosystem respiration is the sum of all respiration occurring by the living organisms in a specific ecosystem. The two main processes that contribute to ecosystem respiration are photosynthesis and cellular respiration. Photosynthesis uses carbon-dioxide and water, in the presence of sunlight to produce glucose and oxygen whereas cellular respiration uses glucose and oxygen to produce carbon-dioxide, water, and energy. The coordination of inputs and outputs of these two processes creates a completely interconnected system, constituting the underlying functioning of the ecosystems overall respiration.

John Albert Raven FRS FRSE is a British botanist, and emeritus professor at University of Dundee and the University of Technology Sydney. His primary research interests lie in the ecophysiology and biochemistry of marine and terrestrial primary producers such as plants and algae.

Some types of lichen are able to fix nitrogen from the atmosphere. This process relies on the presence of cyanobacteria as a partner species within the lichen. The ability to fix nitrogen enables lichen to live in nutrient-poor environments. Lichen can also extract nitrogen from the rocks on which they grow.

References

  1. Lötscher, Markus; Klumpp, Katja; Schnyder, Hans (2004). "Growth and maintenance respiration for individual plants in hierarchically structured canopies of Medicago sativa and Helianthus annuus: the contribution of current and old assimilates". New Phytologist. 164 (2): 305–316. doi: 10.1111/j.1469-8137.2004.01170.x . ISSN   1469-8137. PMID   33873559.
  2. 1 2 Penning de Vries FWT (1975). "The cost of maintenance processes in plant cells", Annals of Botany, 39:77-92.
  3. Lambers H, Szaniawski RK, de Visser R (1983). "Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance", Physiologia Plantarum, 58:556-563.
  4. 1 2 Amthor JS (2000). "The McCree--de Wit--Penning de Vries--Thornley Respiration Paradigms: 30 Years Later", Annals of Botany, 86:1-20.
  5. Amthor JS (1989). Respiration and Crop Productivity, Springer-Verlag.
  6. Canell MGR, Thornley JHM (2000) "Modelling the components of plant respiration: some guiding principles". Annals of Botany 85:45-54.
  7. Amthor JS, and 12 others (2001). "Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: intermodel comparisons and relationships to field measurements". Journal of Geophysical Research 106:33,623-33,648.
  8. Thornley JHM, France J (2007). Mathematical Models in Agriculture, CABI, Wallingford, UK.