Accessory gene regulator

Last updated

Accessory gene regulator (agr) is a complex 5 gene locus that is a global regulator of virulence in Staphylococcus aureus . [1] [2] [3] It encodes a two-component transcriptional quorum-sensing (QS) system activated by an autoinducing, thiolactone-containing cyclic peptide (AIP). [4]

Agr occurs in 4 allelic subtypes that have an important role in staphylococcal evolution. [5] [6] The corresponding AIPs are mutually cross-inhibitory, which may enhance the evolutionary separation of the 4 groups. [6] [7] The agr receptor, AgrC, is a model histidine phosphokinase (HPK) that has been used to decipher the molecular mechanism of signal transduction. [8] AIP binding to the extracellular domain of AgrC causes twisting of the intracellular a-helical domain so as to enable trans-phosphorylation of the active site histidine;  the inhibitory AIPs cause the α-helical domain to twist in the opposite direction, preventing trans-phosphorylation. [8] The agr QS circuit autoactivates transcription of agrA which, in turn upregulates the phenol-souble modulins. [9] More importantly, it activates transcription of a divergently oriented promoter whose transcript, known as RNAIII, [10] is a 514 nt regulatory RNA that encodes δ-hemolysin and is the major effector of the agr regulon. [10] RNAIII acts by antisense inhibition or activation of target gene translation. In vitro, early in growth, genes encoding surface proteins important for adhesion and immune evasion (such as spa – encoding proteinA [11] ) are expressed, enabling the organism to gain a foothold. Later in growth, these genes are down-regulated by RNAIII and those encoding toxins, hemolysins and other virulence-related proteins, are turned on, enabling the organism to establish and promulgate its pathological programs, such as abscess formation. [12] It is assumed that this program operates in vivo as well. As agr is essential for staphylococcal contagion, [13] agr-defective mutants are not contagious, but enable the organism’s long-term survival in chronic conditions such as surgical implant infections, osteomyelitis or the infected lung in cystic fibrosis. In keeping with this behavior, mutations inactivating agr function enhance the stability of biofilms, [14] which are key to the maintenance of chronic infections.

Agr is widely conserved among Bacillota [15] and has a well-defined role in virulence regulation in several genera, especially Listeria and Clostridia .

Related Research Articles

<i>Staphylococcus aureus</i> Species of Gram-positive bacterium

Staphylococcus aureus is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often positive for catalase and nitrate reduction and is a facultative anaerobe that can grow without the need for oxygen. Although S. aureus usually acts as a commensal of the human microbiota, it can also become an opportunistic pathogen, being a common cause of skin infections including abscesses, respiratory infections such as sinusitis, and food poisoning. Pathogenic strains often promote infections by producing virulence factors such as potent protein toxins, and the expression of a cell-surface protein that binds and inactivates antibodies. S. aureus is one of the leading pathogens for deaths associated with antimicrobial resistance and the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA) is a worldwide problem in clinical medicine. Despite much research and development, no vaccine for S. aureus has been approved.

<span class="mw-page-title-main">Panton–Valentine leukocidin</span>

Panton–Valentine leukocidin (PVL) is a cytotoxin—one of the β-pore-forming toxins. The presence of PVL is associated with increased virulence of certain strains (isolates) of Staphylococcus aureus. It is present in the majority of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) isolates studied and is the cause of necrotic lesions involving the skin or mucosa, including necrotic hemorrhagic pneumonia. PVL creates pores in the membranes of infected cells. PVL is produced from the genetic material of a bacteriophage that infects Staphylococcus aureus, making it more virulent.

Staphylokinase is a protein produced by Staphylococcus aureus. It contains 136 amino acid residues and has a molecular mass of 15kDa. Synthesis of staphylokinase occurs in late exponential phase. It is similar to streptokinase.

RNAIII is a stable 514 nt regulatory RNA transcribed by the P3 promoter of the Staphylococcus aureus quorum-sensing agr system ). It is the major effector of the agr regulon, which controls the expression of many S. aureus genes encoding exoproteins and cell wall associated proteins plus others encoding regulatory proteins The RNAIII transcript also encodes the 26 amino acid δ-haemolysin peptide (Hld). RNAIII contains many stem loops, most of which match the Shine-Dalgarno sequence involved in translation initiation of the regulated genes. Some of these interactions are inhibitory, others stimulatory; among the former is the regulatory protein Rot. In vitro, RNAIII is expressed post exponentially, inhibiting translation of the surface proteins, notably protein A, while stimulating that of the exoproteins, many of which are tissue-degrading enzymes or cytolysins. Among the latter is the important virulence factor, α-hemolysin (Hla), whose translation RNAIII activates by preventing the formation of an inhibitory foldback loop in the hla mRNA leader.

<i>Staphylococcus aureus</i> alpha toxin

Alpha-toxin, also known as alpha-hemolysin (Hla), is the major cytotoxic agent released by bacterium Staphylococcus aureus and the first identified member of the pore forming beta-barrel toxin family. This toxin consists mostly of beta-sheets (68%) with only about 10% alpha-helices. The hly gene on the S. aureus chromosome encodes the 293 residue protein monomer, which forms heptameric units on the cellular membrane to form a complete beta-barrel pore. This structure allows the toxin to perform its major function, development of pores in the cellular membrane, eventually causing cell death.

<span class="mw-page-title-main">Toxic shock syndrome toxin</span>

Toxic shock syndrome toxin (TSST) is a superantigen with a size of 22 kDa produced by 5 to 25% of Staphylococcus aureus isolates. It causes toxic shock syndrome (TSS) by stimulating the release of large amounts of interleukin-1, interleukin-2 and tumour necrosis factor. In general, the toxin is not produced by bacteria growing in the blood; rather, it is produced at the local site of an infection, and then it enters the blood stream.

Phenol-soluble modulins (PSMs) are a family of small proteins, that carry out a variety of functions, including acting as toxins, assisting in biofilm formation, and colony spreading. PSMs are produced by Staphylococcus bacteria including Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus epidermidis. Many PSMs are encoded within the core genome and can play an important virulence factor. PSMs were first discovered in S. epidermidis by Seymour Klebanoff and via hot-phenol extraction and were described as a pro-inflammatory complex of three peptides. Since their initial discovery, numerous roles of PSMs have been identified. However, due in part to the small size of many PSMs, they have largely gone unnoticed until recent years.

'Staphylococcus aureus delta toxin is a toxin produced by Staphylococcus aureus. It has a wide spectrum of cytolytic activity.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">SprD</span>

In molecular biology SprD is a non-coding RNA expressed on pathogenicity islands in Staphylococcus aureus. It was identified in silico along with a number of other sRNAs (SprA-G) through microarray analysis which were confirmed using a Northern blot. SprD has been found to significantly contribute to causing disease in an animal model.

Rsa RNAs are non-coding RNAs found in the bacterium Staphylococcus aureus. The shared name comes from their discovery, and does not imply homology. Bioinformatics scans identified the 16 Rsa RNA families named RsaA-K and RsaOA-OG. Others, RsaOH-OX, were found thanks to an RNomic approach. Although the RNAs showed varying expression patterns, many of the newly discovered RNAs were shown to be Hfq-independent and most carried a C-rich motif (UCCC).

<span class="mw-page-title-main">Enterotoxin type B</span>

In the field of molecular biology, enterotoxin type B, also known as Staphylococcal enterotoxin B (SEB), is an enterotoxin produced by the gram-positive bacteria Staphylococcus aureus. It is a common cause of food poisoning, with severe diarrhea, nausea and intestinal cramping often starting within a few hours of ingestion. Being quite stable, the toxin may remain active even after the contaminating bacteria are killed. It can withstand boiling at 100 °C for a few minutes. Gastroenteritis occurs because SEB is a superantigen, causing the immune system to release a large amount of cytokines that lead to significant inflammation.

SaPIs are a family of ~15 kb mobile genetic elements resident in the genomes of the vast majority of S. aureus strains. Much like bacteriophages, SaPIs can be transferred to uninfected cells and integrate into the host chromosome. Unlike the bacterial viruses, however, integrated SaPIs are mobilized by host infection with "helper" bacteriophages. SaPIs are used by the host bacteria to co-opt the phage reproduction cycle for their own genetic transduction and also inhibit phage reproduction in the process.

<span class="mw-page-title-main">Glutamyl endopeptidase GluV8</span>

Glutamyl endopeptidase is an extracellular bacterial serine protease of the glutamyl endopeptidase I family that was initially isolated from the Staphylococcus aureus strain V8. The protease is, hence, commonly referred to as "V8 protease", or alternatively SspA from its corresponding gene.

<span class="mw-page-title-main">Aureolysin</span>

Aureolysin is an extracellular metalloprotease expressed by Staphylococcus aureus. This protease is a major contributor to the bacterium's virulence, or ability to cause disease, by cleaving host factors of the innate immune system as well as regulating S. aureus secreted toxins and cell wall proteins. To catalyze its enzymatic activities, aureolysin requires zinc and calcium which it obtains from the extracellular environment within the host.

Staphylococcus schleiferi is a Gram-positive, cocci-shaped bacterium of the family Staphylococcaceae. It is facultatively anaerobic, coagulase-variable, and can be readily cultured on blood agar where the bacterium tends to form opaque, non-pigmented colonies and beta (β) hemolysis. There exists two subspecies under the species S. schleiferi: Staphylococcus schleiferi subsp. schleiferi and Staphylococcus schleiferi subsp. coagulans.

Staphylococcus pseudintermedius is a gram positive coccus bacteria of the genus Staphylococcus found worldwide. It is primarily a pathogen for domestic animals, but has been known to affect humans as well.S. pseudintermedius is an opportunistic pathogen that secretes immune modulating virulence factors, has many adhesion factors, and the potential to create biofilms, all of which help to determine the pathogenicity of the bacterium. Diagnoses of Staphylococcus pseudintermedius have traditionally been made using cytology, plating, and biochemical tests. More recently, molecular technologies like MALDI-TOF, DNA hybridization and PCR have become preferred over biochemical tests for their more rapid and accurate identifications. This includes the identification and diagnosis of antibiotic resistant strains.

<span class="mw-page-title-main">Teg49 small RNA</span> Non-coding RNA

Teg49 is a non-coding RNA present in the extended promoter region of the staphylococcal accessory regulator sarA. It was identified by RNA-seq and confirmed by Northern blot. It is modulated by sigB and cshA and it most likely contributes to virulence of S. aureus by modulating SarA expression.

Staphopain A (<i>Staphylococcus aureus</i>)

Staphopain A is a secreted cysteine protease produced by Staphylococcus aureus. It was first identified in the S. aureus V8 strain as a papain-like cysteine protease. The protease distinguishes itself from the other major proteases of S. aureus in its very broad specificity and its ability to degrade elastin.

References

  1. Recsei P, Kreiswirth B, O'Reilly M, Schlievert P, Gruss A, Novick RP (January 1986). "Regulation of exoprotein gene expression in Staphylococcus aureus by agar". Molecular & General Genetics. 202 (1): 58–61. doi:10.1007/BF00330517. PMID   3007938. S2CID   8592594.
  2. Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Villar Hernandez R, et al. (2017-04-14). "Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections". PLOS ONE. 12 (4): e0175552. Bibcode:2017PLoSO..1275552G. doi: 10.1371/journal.pone.0175552 . PMC   5391941 . PMID   28410390.
  3. Tan L, Li SR, Jiang B, Hu XM, Li S (2018). "Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (agr) System". Frontiers in Microbiology. 9: 55. doi: 10.3389/fmicb.2018.00055 . PMC   5789755 . PMID   29422887.
  4. Ji G, Beavis RC, Novick RP (December 1995). "Cell density control of staphylococcal virulence mediated by an octapeptide pheromone". Proceedings of the National Academy of Sciences of the United States of America. 92 (26): 12055–9. Bibcode:1995PNAS...9212055J. doi: 10.1073/pnas.92.26.12055 . PMC   40295 . PMID   8618843.
  5. Wright JS, Traber KE, Corrigan R, Benson SA, Musser JM, Novick RP (August 2005). "The agr radiation: an early event in the evolution of staphylococci". Journal of Bacteriology. 187 (16): 5585–94. doi:10.1128/JB.187.16.5585-5594.2005. PMC   1196086 . PMID   16077103.
  6. 1 2 Jarraud S, Lyon GJ, Figueiredo AM, Lina G, Gérard L, Vandenesch F, et al. (November 2000). "Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus". Journal of Bacteriology. 182 (22): 6517–22. doi:10.1128/jb.182.22.6517-6522.2000. PMC   94802 . PMID   11053400.
  7. Ji G, Beavis R, Novick RP (June 1997). "Bacterial interference caused by autoinducing peptide variants". Science. 276 (5321): 2027–30. doi:10.1126/science.276.5321.2027. PMID   9197262.
  8. 1 2 Wang B, Zhao A, Xie Q, Olinares PD, Chait BT, Novick RP, Muir TW (January 2017). "Functional Plasticity of the AgrC Receptor Histidine Kinase Required for Staphylococcal Virulence". Cell Chemical Biology. 24 (1): 76–86. doi:10.1016/j.chembiol.2016.12.008. PMC   5697745 . PMID   28065658.
  9. Chatterjee SS, Chen L, Joo HS, Cheung GY, Kreiswirth BN, Otto M (2011-12-12). Horsburgh MJ (ed.). "Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus". PLOS ONE. 6 (12): e28781. Bibcode:2011PLoSO...628781C. doi: 10.1371/journal.pone.0028781 . PMC   3236207 . PMID   22174895.
  10. 1 2 Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (October 1993). "Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule". The EMBO Journal. 12 (10): 3967–75. doi:10.1002/j.1460-2075.1993.tb06074.x. PMC   413679 . PMID   7691599.
  11. Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (May 2000). "Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression". RNA. 6 (5): 668–79. doi:10.1017/S1355838200992550. PMC   1369947 . PMID   10836788.
  12. Novick RP (June 2003). "Autoinduction and signal transduction in the regulation of staphylococcal virulence". Molecular Microbiology. 48 (6): 1429–49. doi: 10.1046/j.1365-2958.2003.03526.x . PMID   12791129. S2CID   6847208.
  13. Shopsin B, Eaton C, Wasserman GA, Mathema B, Adhikari RP, Agolory S, et al. (November 2010). "Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus". The Journal of Infectious Diseases. 202 (10): 1593–9. doi: 10.1086/656915 . PMID   20942648.
  14. Kong KF, Vuong C, Otto M (April 2006). "Staphylococcus quorum sensing in biofilm formation and infection". International Journal of Medical Microbiology. 296 (2–3): 133–9. doi:10.1016/j.ijmm.2006.01.042. PMID   16487744.
  15. Wuster A, Babu MM (January 2008). "Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes". Journal of Bacteriology. 190 (2): 743–6. doi:10.1128/JB.01135-07. PMC   2223712 . PMID   17933897.