Achita (crater)

Last updated

Achita
PIA20947-Ceres-DwarfPlanet-Dawn-4thMapOrbit-LAMO-image185-20160603.jpg
Achita Crater
Feature typeImpact crater
Location Ceres
Coordinates 25°49′N65°58′E / 25.82°N 65.96°E / 25.82; 65.96 [1]
Diameter40 kilometres (25 mi)
Discoverer Dawn
NamingAfter the Nigerian god of agriculture

Achita is a large impact crater on the dwarf planet Ceres. The crater is named after Achita, a Nigerian god of agriculture. The crater was imaged as part of NASA's Dawn mission. [2] The probe showed that Achita has mass-wasting ridges on the floor [3] and is the fourth oldest crater on Ceres having been formed 570 million years ago. [4]

Related Research Articles

<span class="mw-page-title-main">4 Vesta</span> Second largest asteroid of the main asteroid belt

Vesta is one of the largest objects in the asteroid belt, with a mean diameter of 525 kilometres (326 mi). It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta, the virgin goddess of home and hearth from Roman mythology.

<span class="mw-page-title-main">Tethys (moon)</span> Moon of Saturn

Tethys, or Saturn III, is the fifth-largest moon of Saturn, measuring about 1,060 km (660 mi) across. It was discovered by Giovanni Domenico Cassini in 1684, and is named after the titan Tethys of Greek mythology.

<i>Dawn</i> (spacecraft) NASA orbiter mission to asteroid Vesta and dwarf planet Ceres (2007–2018)

Dawn is a retired space probe that was launched by NASA in September 2007 with the mission of studying two of the three known protoplanets of the asteroid belt: Vesta and Ceres. In the fulfillment of that mission—the ninth in NASA's Discovery Program—Dawn entered orbit around Vesta on July 16, 2011, and completed a 14-month survey mission before leaving for Ceres in late 2012. It entered orbit around Ceres on March 6, 2015. In 2017, NASA announced that the planned nine-year mission would be extended until the probe's hydrazine fuel supply was depleted. On November 1, 2018, NASA announced that Dawn had depleted its hydrazine, and the mission was ended. The derelict probe remains in a stable orbit around Ceres.

Christopher Thomas Russell is head of the Space Physics Center at the Institute of Geophysics and Planetary Physics (IGPP) at UCLA, professor in UCLA's Department of Earth, Planetary, and Space Sciences, and Director of the UCLA Branch of the California Space Grant Consortium. He received a B.Sc. from the University of Toronto in 1964 and a Ph.D. from UCLA in 1968. In 1977 he was awarded the James B. Macelwane Medal and in 2003 the John Adam Fleming Medal by the American Geophysical Union (AGU). He is also a Fellow of the AGU. Asteroid 21459 Chrisrussell was named after him in 2008. In 2017, he was awarded the NASA Distinguished Public Service Medal. He has three grandchildren.

<span class="mw-page-title-main">Origin of water on Earth</span> Hypotheses for the possible sources of the water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

<span class="mw-page-title-main">Ceres (dwarf planet)</span> Dwarf planet in the asteroid belt

Ceres is a dwarf planet in the middle main asteroid belt between the orbits of Mars and Jupiter. It was the first known asteroid, discovered on 1 January 1801 by Giuseppe Piazzi at Palermo Astronomical Observatory in Sicily, and announced as a new planet. Ceres was later classified as an asteroid and then a dwarf planet, the only one not beyond Neptune's orbit.

<span class="mw-page-title-main">Isidis Planitia</span> Crater on Mars

Isidis Planitia is a plain located within a giant impact basin on Mars, located partly in the Syrtis Major quadrangle and partly in the Amenthes quadrangle. At approximately 1,900 km (1,200 mi) in diameter, it is the third-largest confirmed impact structure on the planet, after the Hellas and Utopia basins. Isidis was likely the last major basin to be formed on Mars, having formed approximately 3.9 billion years ago during the Noachian period, by an impactor around 200 kilometres (120 mi) in diameter. Due to dust coverage, it typically appears bright in telescopic views, and was mapped as a classical albedo feature, Isidis Regio, visible by telescope in the pre-spacecraft era.

<span class="mw-page-title-main">Crater counting</span>

Crater counting is a method for estimating the age of a planet's surface based upon the assumptions that when a piece of planetary surface is new, then it has no impact craters; impact craters accumulate after that at a rate that is assumed known. Consequently, counting how many craters of various sizes there are in a given area allows determining how long they have accumulated and, consequently, how long ago the surface has formed. The method has been calibrated using the ages obtained by radiometric dating of samples returned from the Moon by the Luna and Apollo missions. It has been used to estimate the age of areas on Mars and other planets that were covered by lava flows, on the Moon of areas covered by giant mares, and how long ago areas on the icy moons of Jupiter and Saturn flooded with new ice.

<span class="mw-page-title-main">Water on Mars</span> Study of past and present water on Mars

Almost all water on Mars today exists as polar permafrost ice, though it also exists in small quantities as vapor in the atmosphere.

<span class="mw-page-title-main">Planetary surface</span> Where the material of a planetary masss outer crust contacts its atmosphere or outer space

A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets, dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

<span class="mw-page-title-main">Bright spots on Ceres</span> Surface features discovered 2015

Several bright surface features were discovered on the dwarf planet Ceres by the Dawn spacecraft in 2015.

<span class="mw-page-title-main">Occator (crater)</span> Crater on Ceres

Occator is an impact crater located on Ceres, the largest object in the main asteroid belt that lies between the orbits of Mars and Jupiter, that contains "Spot 5", the brightest of the bright spots observed by the Dawn spacecraft. It was known as "Region A" in ground-based images taken by the W. M. Keck Observatory on Mauna Kea.

<span class="mw-page-title-main">Kerwan (crater)</span>

Kerwan is the largest confirmed crater and one of the largest geological features on Ceres. It was discovered on February 19, 2015 from Dawn images as it approached Ceres. The crater is distinctly shallow for its size, and lacks a central peak. A central peak might have been destroyed by a 15-kilometer-wide crater at the center of Kerwan. The crater is likely to be young relative to the rest of Ceres's surface, as Kerwan has largely obliterated the cratering in the southern part of Vendimia Planitia.

<span class="mw-page-title-main">Yalode (crater)</span> Large crater on Ceres

Yalode is the second-largest confirmed crater on Ceres, after Kerwan. It is adjacent to another large crater, Urvara and serves as the namesake for the Yalode Quadrange. Yalode named after the Dahomeyan (Fon) deity of the yam harvest, Yalodé; the name Yalode was officially approved by the International Astronomical Union (IAU) on 3 July 2015.

<span class="mw-page-title-main">Coniraya (crater)</span> Crater on the dwarf planet Ceres

Coniraya is a large, shallow impact crater on the dwarf planet Ceres. It is the namesake for the Coniraya Quadrangle.

<span class="mw-page-title-main">Geology of Ceres</span> Geologic structure and composition of Ceres

The geology of Ceres is the scientific study of the surface, crust, and interior of the dwarf planet Ceres. It seeks to understand and describe Ceres' composition, landforms, evolution, and physical properties and processes. The study draws on fields such as geophysics, remote sensing, geochemistry, geodesy, and cartography.

<span class="mw-page-title-main">Northeast Syrtis</span>

Northeast Syrtis is a region of Mars once considered by NASA as a landing site for the Mars 2020 rover mission. This landing site failed in the competition with Jezero crater, another landing site dozens of kilometers away from Northeast Syrtis. It is located in the northern hemisphere of Mars at coordinates 18°N,77°E in the northeastern part of the Syrtis Major volcanic province, within the ring structure of Isidis impact basin as well. This region contains diverse morphological features and minerals, indicating that water once flowed here. It may be an ancient habitable environment; microbes could have developed and thrived here.

Roger Jay Phillips was an American geophysicist, planetary scientist, and professor emeritus at the Washington University in St. Louis. His research interests included the geophysical structure of planets, and the use of radar and gravity to investigate the surfaces and interiors of the planets.

<span class="mw-page-title-main">Brett Denevi</span> Planetary geologist

Brett W. Denevi is a Planetary Geologist at the Johns Hopkins University Applied Physics Laboratory. She is currently serving as the Deputy Principal Investigator for the Lunar Reconnaissance Orbiter Camera. In 2014, Asteroid 9026 was named Denevi in her honor. She is the recipient of seven NASA group achievement awards and in 2014 she was awarded a NASA Early Career Fellowship. In 2015, she received a Maryland Academy of Sciences Outstanding Young Scientist Award.

References

  1. Staff (6 July 2015). "Planetary Names: Crater, craters: Achita on Ceres". USGS . Retrieved 23 August 2017.
  2. Russell, C. T.; Raymond, C. A.; Ammannito, E.; Buczkowski, D. L.; De Sanctis, M. C.; Hiesinger, H.; Jaumann, R.; Konopliv, A. S.; McSween, H. Y.; Nathues, A.; Park, R. S.; Pieters, C. M.; Prettyman, T. H.; McCord, T. B.; McFadden, L. A. (2 September 2016). "Dawn arrives at Ceres: Exploration of a small, volatile-rich world" (PDF). Science. 353 (6303): 1008–1010. doi: 10.1126/science.aaf4219 . ISSN   0036-8075. PMID   27701107. S2CID   33455833.
  3. Hiesinger, H.; Marchi, S.; Schmedemann, N.; Schenk, P.; Pasckert, J. H.; Neesemann, A.; O’Brien, D. P.; Kneissl, T.; Ermakov, A. I.; Fu, R. R.; Bland, M. T.; Nathues, A.; Platz, T.; Williams, D. A.; Jaumann, R. (2 September 2016). "Cratering on Ceres: Implications for its crust and evolution". Science. 353 (6303): aaf4759. doi: 10.1126/science.aaf4759 . ISSN   0036-8075. PMID   27701089. S2CID   7736874.
  4. Pasckert, J.H.; Hiesinger, H.; Ruesch, O.; Williams, D.A.; Naß, A.; Kneissl, T.; Mest, S.C.; Buczkowski, D.L.; Scully, J.E.C.; Schmedemann, N.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Hoffmann, M. (December 2018). "Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust" . Icarus. 316: 28–45. doi:10.1016/j.icarus.2017.06.015. S2CID   125968460.