Acoustic lobing

Last updated

Acoustic lobing refers to the radiation pattern of a combination of two or more loudspeaker drivers at a certain frequency, as seen looking at the speaker from its side. In most multi-way speakers, it is at the crossover frequency that the effects of lobing are of greatest concern, since this determines how well the speaker preserves the tonality of the original recorded content. [1]

In practice, room-effects and interactions largely mean that the ideal loudspeaker (or combination thereof) is not practically possible. However a speaker that has the best dispersion at all frequencies of interest (especially the crossover frequency), will have the least colouration of sound - i.e., it will most faithfully reproduce the recorded material. Thus, an ideal speaker would have no lobes at all frequencies - in other words it will act as a point source radiating omnidirectionally at all frequencies. In practice all speakers will exhibit some amount of lobing at the crossover frequency. The primary reasons for this are the physical distance between the drivers, and the drivers' effective diameters relative to the frequency of interest.

Lobing is measured as having a comb filtering response (i.e., areas of peaks and dips) as the listening position varies vertically w.r.t. the nominal on-axis position. Since a true spherical wavefront cannot be achieved in practice, designers try to make the lobe as wide as possible at the crossover frequency, such that at typical listening positions, the speaker appears omnidirectional.[ citation needed ]

Lobe formation

For the sake of simplicity, the following assumes two point sources separated by a distance d vertically, both radiating into half-space at a certain frequency f. Thus we can express lobing as a function of d and its relation to the wavelength λ. As d becomes significant (or larger) as compared to λ, the acoustic wavefront starts becoming narrower or more directive.

The following image shows a simplified representation of how two non-coincident drivers exhibit lobing (the difference between the lobing patterns is greatly exaggerated to demonstrate the effect):

Acoustic lobing.png

The large black dot is the vertical listening position relative to the centre, at a certain fixed horizontal distance from the speaker. For wavelengths much greater than d, the wavefront is almost spherical (circular, when seen from the side) and the sound level is constant for a variety of such listening positions - the off-axis response of the speaker is almost omnidirectional. As the distance d approaches λ/4, the wavefront starts becoming narrower. At the listening position, the sound level is not the same as it would have been, had it been exactly midway between the drivers. The area where the sound level is constant for a given range of vertical positions (and fixed listening distance) is the lobe. Outside the lobe, the sound level is much less and this is what causes the speaker to have a change in tonality as one's listening height changes.

Note: For an individual driver this effect is known as directivity, and is observable in both vertical and horizontal planes, and d is now the driver's diameter relative to the wavelength, whereas, the lobing pattern due to two or more drivers is primarily an effect in the vertical plane, as a result of the distance between the two drivers.

The physical reason for a lobe to form is the fact that at any point that is at a position unequal from both drivers, at certain frequencies (i.e., wavelengths) and depending on d and relative difference between the distances to the listening position, the wavefronts from each driver will interfere constructively or destructively. This constructive or destructive interference happens due to the relative phases of the waves from each driver as they reach the listening position.

Thus, for any given frequency, there will be a minimum distance from the speaker below which there will be radical changes in sound level as the listening position is changed vertically. And this distance becomes larger as the distance between the drivers increases. Thus, the best compromise is obtained when, for practical listening distances, we can choose drivers large enough to cover as much of the audio band as possible but at the same time small enough so they can be as closely spaced as possible as to appear as a point source for any practical listening distance. [2]

- The article assumes a typical loudspeaker configuration where multiple drivers are arranged vertically. Therefore, the lobing phenomenon is observable in the vertical plane. For horizontally arranged drivers, the lobing phenomenon would be observable in the horizontal plane.

Related Research Articles

<span class="mw-page-title-main">Subwoofer</span> Loudspeaker for low-pitched audio frequencies

A subwoofer is a loudspeaker designed to reproduce low-pitched audio frequencies known as bass and sub-bass, lower in frequency than those which can be (optimally) generated by a woofer. The typical frequency range for a subwoofer is about 20–200 Hz for consumer products, below 100 Hz for professional live sound, and below 80 Hz in THX-certified systems. Subwoofers are never used alone, as they are intended to augment the low-frequency range of loudspeakers that cover the higher frequency bands. While the term "subwoofer" technically only refers to the speaker driver, in common parlance, the term often refers to a subwoofer driver mounted in a speaker enclosure (cabinet), often with a built-in amplifier.

<span class="mw-page-title-main">Loudspeaker</span> Converts an electrical audio signal into a corresponding sound

A loudspeaker is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A speaker system, also often simply referred to as a "speaker" or "loudspeaker", comprises one or more such speaker drivers, an enclosure, and electrical connections possibly including a crossover network. The speaker driver can be viewed as a linear motor attached to a diaphragm which couples that motor's movement to motion of air, that is, sound. An audio signal, typically from a microphone, recording, or radio broadcast, is amplified electronically to a power level capable of driving that motor in order to reproduce the sound corresponding to the original unamplified electronic signal. This is thus the opposite function to the microphone; indeed the dynamic speaker driver, by far the most common type, is a linear motor in the same basic configuration as the dynamic microphone which uses such a motor in reverse, as a generator.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Ambisonics</span> Full-sphere surround sound format

Ambisonics is a full-sphere surround sound format: in addition to the horizontal plane, it covers sound sources above and below the listener.

Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.

<span class="mw-page-title-main">Helical antenna</span> Type of antenna

A helical antenna is an antenna consisting of one or more conducting wires wound in the form of a helix. A helical antenna made of one helical wire, the most common type, is called monofilar, while antennas with two or four wires in a helix are called bifilar, or quadrifilar, respectively.

<span class="mw-page-title-main">Whip antenna</span> Type of radio antenna

A whip antenna is an antenna consisting of a straight flexible wire or rod. The bottom end of the whip is connected to the radio receiver or transmitter. A whip antenna is a form of monopole antenna. The antenna is designed to be flexible so that it does not break easily, and the name is derived from the whip-like motion that it exhibits when disturbed. Whip antennas for portable radios are often made of a series of interlocking telescoping metal tubes, so they can be retracted when not in use. Longer whips, made for mounting on vehicles and structures, are made of a flexible fiberglass rod around a wire core and can be up to 11 m long.

<span class="mw-page-title-main">Sound reinforcement system</span> Amplified sound system for public events

A sound reinforcement system is the combination of microphones, signal processors, amplifiers, and loudspeakers in enclosures all controlled by a mixing console that makes live or pre-recorded sounds louder and may also distribute those sounds to a larger or more distant audience. In many situations, a sound reinforcement system is also used to enhance or alter the sound of the sources on the stage, typically by using electronic effects, such as reverb, as opposed to simply amplifying the sources unaltered.

<span class="mw-page-title-main">Horn loudspeaker</span> Loudspeaker using an acoustic horn

A horn loudspeaker is a loudspeaker or loudspeaker element which uses an acoustic horn to increase the overall efficiency of the driving element(s). A common form (right) consists of a compression driver which produces sound waves with a small metal diaphragm vibrated by an electromagnet, attached to a horn, a flaring duct to conduct the sound waves to the open air. Another type is a woofer driver mounted in a loudspeaker enclosure which is divided by internal partitions to form a zigzag flaring duct which functions as a horn; this type is called a folded horn speaker. The horn serves to improve the coupling efficiency between the speaker driver and the air. The horn can be thought of as an "acoustic transformer" that provides impedance matching between the relatively dense diaphragm material and the less-dense air. The result is greater acoustic output power from a given driver.

<span class="mw-page-title-main">Slot antenna</span>

A slot antenna consists of a metal surface, usually a flat plate, with one or more holes or slots cut out. When the plate is driven as an antenna by an applied radio frequency current, the slot radiates electromagnetic waves in a way similar to a dipole antenna. The shape and size of the slot, as well as the driving frequency, determine the radiation pattern. Slot antennas are usually used at UHF and microwave frequencies at which wavelengths are small enough that the plate and slot are conveniently small. At these frequencies, the radio waves are often conducted by a waveguide, and the antenna consists of slots in the waveguide; this is called a slotted waveguide antenna. Multiple slots act as a directive array antenna and can emit a narrow fan-shaped beam of microwaves. They are used in standard laboratory microwave sources used for research, UHF television transmitting antennas, antennas on missiles and aircraft, sector antennas for cellular base stations, and particularly marine radar antennas. A slot antenna's main advantages are its size, design simplicity, and convenient adaptation to mass production using either waveguide or PC board technology.

<span class="mw-page-title-main">Monopole antenna</span> Type of radio antenna

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

<span class="mw-page-title-main">Wave field synthesis</span> Technique for creating virtual acoustic environments

Wave field synthesis (WFS) is a spatial audio rendering technique, characterized by creation of virtual acoustic environments. It produces artificial wavefronts synthesized by a large number of individually driven loudspeakers. Such wavefronts seem to originate from a virtual starting point, the virtual source or notional source. Contrary to traditional spatialization techniques such as stereo or surround sound, the localization of virtual sources in WFS does not depend on or change with the listener's position.

<span class="mw-page-title-main">Loudspeaker enclosure</span> Acoustical component

A loudspeaker enclosure or loudspeaker cabinet is an enclosure in which speaker drivers and associated electronic hardware, such as crossover circuits and, in some cases, power amplifiers, are mounted. Enclosures may range in design from simple, homemade DIY rectangular particleboard boxes to very complex, expensive computer-designed hi-fi cabinets that incorporate composite materials, internal baffles, horns, bass reflex ports and acoustic insulation. Loudspeaker enclosures range in size from small "bookshelf" speaker cabinets with 4-inch (10 cm) woofers and small tweeters designed for listening to music with a hi-fi system in a private home to huge, heavy subwoofer enclosures with multiple 18-inch (46 cm) or even 21-inch (53 cm) speakers in huge enclosures which are designed for use in stadium concert sound reinforcement systems for rock music concerts.

<span class="mw-page-title-main">Loudspeaker measurement</span> Quantifying the behaviour of loudspeakers

Loudspeaker measurement is the practice of determining the behaviour of loudspeakers by measuring various aspects of performance. This measurement is especially important because loudspeakers, being transducers, have a higher level of distortion than other audio system components used in playback or sound reinforcement.

<span class="mw-page-title-main">Bi-amping and tri-amping</span> Practice of using two or three audio amplifiers to amplify different audio frequency ranges

Bi-amping and tri-amping is the practice of using two or three audio amplifiers to amplify different audio frequency ranges, with the amplified signals being routed to different speaker drivers, such as woofers, subwoofers and tweeters. Biamping can be done with a single power amplifier if the device has more than one amplifier, as the case with a stereo power amp. Triamping cannot be done with a stereo power amp; a mono power amp would need to be added or a home theatre receiver could be used. With bi-amping and tri-amping, an audio crossover is used to divide a sound signal into different frequency ranges, each of which is then separately amplified and routed to separate loudspeaker drivers. In some bass amplifiers using bi-amping, the woofer and horn-loaded tweeter are in the same speaker enclosure. In some bi-amp set-ups, the drivers are in separate speaker enclosures, such as with home stereos that contain two speakers and a separate subwoofer.

<span class="mw-page-title-main">Acoustic transmission line</span>

An acoustic transmission line is the use of a long duct, which acts as an acoustic waveguide and is used to produce or transmit sound in an undistorted manner. Technically it is the acoustic analog of the electrical transmission line, typically conceived as a rigid-walled duct or tube, that is long and thin relative to the wavelength of sound present in it.

<span class="mw-page-title-main">Line array</span>

A line array is a loudspeaker system that is made up of a number of usually identical loudspeaker elements mounted in a line and fed in phase, to create a near-line source of sound. The distance between adjacent drivers is close enough that they constructively interfere with each other to send sound waves farther than traditional horn-loaded loudspeakers, and with a more evenly distributed sound output pattern.

A parabolic loudspeaker is a loudspeaker which seeks to focus its sound in coherent plane waves either by reflecting sound output from a speaker driver to a parabolic reflector aimed at the target audience, or by arraying drivers on a parabolic surface. The resulting beam of sound travels farther, with less dissipation in air, than horn loudspeakers, and can be more focused than line array loudspeakers allowing sound to be sent to isolated audience targets. The parabolic loudspeaker has been used for such diverse purposes as directing sound at faraway targets in performing arts centers and stadia, for industrial testing, for intimate listening at museum exhibits, and as a sonic weapon.

The midwoofer-tweeter-midwoofer loudspeaker configuration was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. In the MTM arrangement the loudspeaker uses three drivers: Two mid-range for the low frequencies and a tweeter for the higher frequencies, with the tweeter being placed between the mid-range drivers. D'Appolito initially configured his design using a 3rd order crossover, D'Appolito has since amended this original recommendation in favor of 4th order topology. However, this does not impart any significant effect on the MTM design's unique characteristics.

Loudspeaker time-alignment usually simply referred to as "time-alignment" or "Time-Align" is a term applied in loudspeaker systems which use multiple drivers to cover a wide audio range. It involves delaying the sound emanating from one or more drivers to correct the transient response, improve accuracy and, in non-coaxial drivers, improve the directivity or lobe tilting at the crossover frequencies. It employs adjusting the front-to back spacing of the individual drivers so that the sound output is truly simultaneous.

References

  1. Loudspeaker Handbook by John Eargle, page 120
  2. Loudspeaker Handbook by John Eargle, page 123