Activation energy asymptotics

Last updated

Activation energy asymptotics (AEA), also known as large activation energy asymptotics, is an asymptotic analysis used in the combustion field utilizing the fact that the reaction rate is extremely sensitive to temperature changes due to the large activation energy of the chemical reaction.

Contents

History

The techniques were pioneered by the Russian scientists Yakov Borisovich Zel'dovich, David A. Frank-Kamenetskii and co-workers in the 30s, in their study on premixed flames [1] and thermal explosions (Frank-Kamenetskii theory), but not popular to western scientists until the 70s. In the early 70s, due to the pioneering work of Williams B. Bush, Francis E. Fendell, [2] Forman A. Williams, [3] Amable Liñán [4] [5] and John F. Clarke, [6] [7] it became popular in western community and since then it was widely used to explain more complicated problems in combustion. [8]

Method overview

In combustion processes, the reaction rate is dependent on temperature in the following form (Arrhenius law),

where is the activation energy, and is the universal gas constant. In general, the condition is satisfied, where is the burnt gas temperature. This condition forms the basis for activation energy asymptotics. Denoting for unburnt gas temperature, one can define the Zel'dovich number and heat release parameter as follows

In addition, if we define a non-dimensional temperature

such that approaching zero in the unburnt region and approaching unity in the burnt gas region (in other words, ), then the ratio of reaction rate at any temperature to reaction rate at burnt gas temperature is given by [9] [10]

Now in the limit of (large activation energy) with , the reaction rate is exponentially small i.e., and negligible everywhere, but non-negligible when . In other words, the reaction rate is negligible everywhere, except in a small region very close to burnt gas temperature, where . Thus, in solving the conservation equations, one identifies two different regimes, at leading order,

where in the convective-diffusive zone, reaction term will be neglected and in the thin reactive-diffusive layer, convective terms can be neglected and the solutions in these two regions are stitched together by matching slopes using method of matched asymptotic expansions. The above mentioned two regime are true only at leading order since the next order corrections may involve all the three transport mechanisms.

See also

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

<span class="mw-page-title-main">Bose gas</span> State of matter of many bosons

An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin, and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas, and extended to massive particles by Albert Einstein who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

<span class="mw-page-title-main">Premixed flame</span>

A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available throughout a homogeneous stoichiometric premixed charge, the combustion process once initiated sustains itself by way of its own heat release. The majority of the chemical transformation in such a combustion process occurs primarily in a thin interfacial region which separates the unburned and the burned gases. The premixed flame interface propagates through the mixture until the entire charge is depleted. The propagation speed of a premixed flame is known as the flame speed which depends on the convection-diffusion-reaction balance within the flame, i.e. on its inner chemical structure. The premixed flame is characterised as laminar or turbulent depending on the velocity distribution in the unburned pre-mixture.

In combustion engineering and explosion studies, the Markstein number characterizes the effect of local heat release of a propagating flame on variations in the surface topology along the flame and the associated local flame front curvature. The dimensionless Markstein number is defined as:

The narrow escape problem is a ubiquitous problem in biology, biophysics and cellular biology.

<span class="mw-page-title-main">Cantilever magnetometry</span>

Cantilever magnetometry is the use of a cantilever to measure the magnetic moment of magnetic particles. On the end of cantilever is attached a small piece of magnetic material, which interacts with external magnetic fields and exerts torque on the cantilever. These torques cause the cantilever to oscillate faster or slower, depending on the orientation of the particle's moment with respect to the external field, and the magnitude of the moment. The magnitude of the moment and magnetic anisotropy of the material can be deduced by measuring the cantilever's oscillation frequency versus external field.

In physics, the Maxwell–Jüttner distribution, sometimes called Jüttner–Synge distribution, is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.

In combustion, Frank-Kamenetskii theory explains the thermal explosion of a homogeneous mixture of reactants, kept inside a closed vessel with constant temperature walls. It is named after a Russian scientist David A. Frank-Kamenetskii, who along with Nikolay Semenov developed the theory in the 1930s.

The Zel'dovich number is a dimensionless number which provides a quantitative measure for the activation energy of a chemical reaction which appears in the Arrhenius exponent, named after the Russian scientist Yakov Borisovich Zel'dovich, who along with David A. Frank-Kamenetskii, first introduced in their paper in 1938. In 1983 ICDERS meeting at Poitiers, it was decided to name after Zel'dovich.

In combustion, heat release parameter is a dimensionless parameter which measures the amount of heat released by the combustion process. It is defined as

Liñán diffusion flame theory is a theory developed by Amable Liñán in 1974 to explain the diffusion flame structure using activation energy asymptotics and Damköhler number asymptotics. Liñán used counterflowing jets of fuel and oxidizer to study the diffusion flame structure, analyzing for the entire range of Damköhler number. His theory predicted four different types of flame structure as follows,

In combustion, Zel'dovich–Liñán model is a two-step reaction model for the combustion processes, named after Yakov Borisovich Zel'dovich and Amable Liñán. The model includes a chain-branching and a chain-breaking reaction. The model was first introduced by Zel'dovich in 1948 and later analysed by Liñán using activation energy asymptotics in 1971. The mechanism reads as

In combustion, Burke–Schumann limit, or large Damköhler number limit, is the limit of infinitely fast chemistry, named after S.P. Burke and T.E.W. Schumann, due to their pioneering work on Burke–Schumann flame. One important conclusion of infinitely fast chemistry is the non-co-existence of fuel and oxidizer simultaneously except in a thin reaction sheet. The inner structure of the reaction sheet is described by Liñán's equation.

The Shvab–Zeldovich formulation is an approach to remove the chemical-source terms from the conservation equations for energy and chemical species by linear combinations of independent variables, when the conservation equations are expressed in a common form. Expressing conservation equations in common form often limits the range of applicability of the formulation. The method was first introduced by V. A. Shvab in 1948 and by Yakov Zeldovich in 1949.

ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation. The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads

References

  1. Y.B. Zel’dovich and D.A. Frank-Kamenetskii, Theory of uniform propagation of flame, Zh. Fiz. Khim+. 12 (1938), pp. 100–105.
  2. Bush, W. B., & Fendell, F. E. (1970). Asymptotic analysis of laminar flame propagation for general Lewis numbers. Combustion Science and Technology, 1(6), 421–428.
  3. Williams, F. A. (1971). Theory of combustion in laminar flows. Annual Review of Fluid Mechanics, 3(1), 171–188.
  4. Liñán, A. (1971). A theoretical analysis of premixed flame propagation with an isothermal chain reaction. AFOSR Contract No. E00AR68-0031, 1.
  5. Linan, A. (1974). The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica, 1(7-8), 1007–1039.
  6. Clarke, J. F. (1975). The pre-mixed flame with large activation energy and variable mixture strength: elementary asymptotic analysis. Combustion Science and Technology, 10(5-6), 189-194.
  7. Rajamanickam, P. (2018). On the two-reactant one-step activation-energy asymptotics for steady, adiabatic, planar flames with Lewis numbers of unity. Combustion Theory and Modelling, 22(5), 913-920.
  8. Buckmaster, J. D., & Ludford, G. S. S. (1982). Theory of laminar flames. Cambridge University Press.
  9. Williams, F. A. (2018). Combustion theory. CRC Press.
  10. Linan, A., & Williams, F. A. (1993). Fundamental aspects of combustion.