Active safety

Last updated

The term active safety (or primary safety) is used in two distinct ways.

Contents

The first, mainly in the United States, refers to automobile safety systems that help avoid accidents, such as good steering and brakes. In this context, passive safety refers to features that help reduce the effects of an accident, such as seat belts, airbags and strong body structures. This use is essentially interchangeable with the terms primary and secondary safety that tend to be used worldwide in standard UK English. The correct ISO term is "primary safety" (ISO 12353-1).

However, active safety is increasingly being used to describe systems that use an understanding of the state of the vehicle to both avoid and minimise the effects of a crash. These include braking systems, like brake assist, traction control systems and electronic stability control systems, that interpret signals from various sensors to help the driver control the vehicle. Additionally, forward-looking, sensor-based systems such as advanced driver-assistance systems including adaptive cruise control and collision warning/avoidance/mitigation systems are also considered as active safety systems under this definition.

These forward-looking technologies are expected to play an increasing role in collision avoidance and mitigation in the future. Most major component suppliers, such as Aptiv, TRW and Bosch, are developing such systems. However, as they become more sophisticated, questions will need to be addressed regarding driver autonomy and at what point these systems should intervene if they believe a crash is likely.

In engineering, active safety systems are systems activated in response to a safety problem or abnormal event. Such systems may be activated by a human operator, automatically by a computer driven system, or even mechanically. In nuclear engineering, active safety contrasts to passive safety in that it relies on operator or computer automated intervention, whereas passive safety systems rely on the laws of nature to make the reactor respond to dangerous events in a favourable manner.

Examples

Automotive sector

In the automotive sector the term active safety (or primary safety) refers to safety systems that are active prior to an accident. This has traditionally referred to non-complex systems such as good visibility from the vehicle and low interior noise levels. Nowadays, however, this area contains highly advanced systems such as anti-lock braking system, electronic stability control and collision warning/avoidance through automatic braking. This compares with passive safety (or secondary safety), which are active during an accident. To this category belong seat belts, deformation zones and air-bags, etc.

Advancement in passive safety systems has progressed very far over the years, and the automotive industry has shifted its attention to active safety where there are still a lot of new unexplored areas. Research today focuses primarily on collision avoidance (with other vehicles, pedestrians and wild animals) [1] and vehicle platooning. [2]

Examples of active safety

Examples of passive safety

Front structure of a Renault Scenic showing crumple zones. Renault Scenic Front Cut.JPG
Front structure of a Renault Scénic showing crumple zones.

See also

Related Research Articles

<span class="mw-page-title-main">Seat belt</span> Vehicle safety device to protect against injury during collisions and sudden stop

A seat belt, also known as a safety belt or spelled seatbelt, is a vehicle safety device designed to secure the driver or a passenger of a vehicle against harmful movement that may result during a collision or a sudden stop. A seat belt reduces the likelihood of death or serious injury in a traffic collision by reducing the force of secondary impacts with interior strike hazards, by keeping occupants positioned correctly for maximum effectiveness of the airbag, and by preventing occupants being ejected from the vehicle in a crash or if the vehicle rolls over.

<span class="mw-page-title-main">Airbag</span> Vehicle safety device

An airbag is a vehicle occupant-restraint system using a bag designed to inflate in milliseconds during a collision and then deflate afterwards. It consists of an airbag cushion, a flexible fabric bag, an inflation module, and an impact sensor. The purpose of the airbag is to provide a vehicle occupant with soft cushioning and restraint during a collision. It can reduce injuries between the flailing occupant and the vehicle's interior.

<span class="mw-page-title-main">Cruise control</span> System that automatically controls the speed of a motor vehicle

Cruise control is a system that automatically controls the speed of an automobile. The system is a servomechanism that takes over the car's throttle to maintain a steady speed set by the driver.

<span class="mw-page-title-main">Automotive safety</span> Study and practice to minimize the occurrence and consequences of motor vehicle accidents

Automotive safety is the study and practice of automotive design, construction, equipment and regulation to minimize the occurrence and consequences of traffic collisions involving motor vehicles. Road traffic safety more broadly includes roadway design.

<span class="mw-page-title-main">Electronic stability control</span> Computerized safety automotive technology

Electronic stability control (ESC), also referred to as electronic stability program (ESP) or dynamic stability control (DSC), is a computerized technology that improves a vehicle's stability by detecting and reducing loss of traction (skidding). When ESC detects loss of steering control, it automatically applies the brakes to help steer the vehicle where the driver intends to go. Braking is automatically applied to wheels individually, such as the outer front wheel to counter oversteer, or the inner rear wheel to counter understeer. Some ESC systems also reduce engine power until control is regained. ESC does not improve a vehicle's cornering performance; instead, it helps reduce the chance of the driver losing control of the vehicle.

<span class="mw-page-title-main">Advanced driver-assistance system</span> Electronic systems that help a vehicle driver while driving or parking

Advanced driver-assistance systems (ADAS) are technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increase car and road safety. ADAS use automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving.

<span class="mw-page-title-main">ZF Friedrichshafen</span> German car parts maker

ZF Friedrichshafen AG, also known as ZF Group, originally Zahnradfabrik Friedrichshafen, and commonly abbreviated to ZF, is a German technology manufacturing company that supplies systems for passenger cars, commercial vehicles and industrial technology. It is headquartered in Friedrichshafen, in the south-west German state of Baden-Württemberg. Specializing in engineering, it is primarily known for its design, research and development, and manufacturing activities in the automotive industry and is one of the largest automotive suppliers in the world. Its products include driveline and chassis technology for cars and commercial vehicles, along with specialized plant equipment such as construction equipment. It is also involved in the rail, marine, defense and aviation industries, as well as general industrial applications. ZF has 162 production locations in 31 countries with approximately 168,700 (2023) employees.

<span class="mw-page-title-main">Lane departure warning system</span> Mechanism designed to warn a driver when the vehicle begins to move out of its lane

In road-transport terminology, a lane departure warning system (LDWS) is a mechanism designed to warn the driver when the vehicle begins to move out of its lane on freeways and arterial roads. These systems are designed to minimize accidents by addressing the main causes of collisions: driver error, distractions and drowsiness. In 2009 the U.S. National Highway Traffic Safety Administration (NHTSA) began studying whether to mandate lane departure warning systems and frontal collision warning systems on automobiles.

An event data recorder (EDR), more specifically motor vehicle event data recorder (MVEDR), similar to an accident data recorder, (ADR) sometimes referred to informally as an automotive black box, is a device installed in some automobiles to record information related to traffic collisions. In the USA EDRs must meet federal standards, as described within the U.S. Code of Federal Regulations.

<span class="mw-page-title-main">Blind spot monitor</span> Vehicle-based sensor device

The blind spot monitor or blind-spot monitoring is a vehicle-based sensor device that detects other vehicles located to the driver’s side and rear. Warnings can be visual, audible, vibrating, or tactile.

Brake assist or emergency brake assist (EBA) is a term for an automobile braking technology that increases braking pressure in an emergency. The first application was developed jointly by Daimler-Benz and TRW/LucasVarity. Research conducted in 1992 at the Mercedes-Benz driving simulator in Berlin revealed that more than 90% of drivers fail to brake with enough force when faced with an emergency.

<span class="mw-page-title-main">Adaptive cruise control</span> Cruise control advanced driver-assistance system

Adaptive cruise control (ACC) is a type of advanced driver-assistance system for road vehicles that automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. As of 2019, it is also called by 20 unique names that describe that basic functionality. This is also known as Dynamic cruise control.

The following outline is provided as an overview of and topical guide to automobiles:

<span class="mw-page-title-main">Vehicle safety technology</span> Special technology developed to ensure the safety and security of automobiles

Vehicle safety technology (VST) in the automotive industry refers to the special technology developed to ensure the safety and security of automobiles and their passengers. The term encompasses a broad umbrella of projects and devices within the automotive world. Notable examples of VST include geo-fencing capabilities, remote speed sensing, theft deterrence, damage mitigation, vehicle-to-vehicle communication, and car-to-computer communication devices which use GPS tracking.

<span class="mw-page-title-main">TRW Automotive</span> American industrial company

TRW Automotive Holdings Corp. was an American global supplier of automotive systems, modules, and components to automotive original equipment manufacturers (OEMs) and related aftermarkets. Tracing its roots from TRW Inc. it was originally headquartered in Livonia, Michigan. It was created in 2002 when the aerospace company Northrop Grumman purchased TRW and sold its automotive division to Blackstone Group.

<span class="mw-page-title-main">Collision avoidance system</span> Motorcar safety system

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system (FCW), or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

Automotive electronics are electronic systems used in vehicles, including engine management, ignition, radio, carputers, telematics, in-car entertainment systems, and others. Ignition, engine and transmission electronics are also found in trucks, motorcycles, off-road vehicles, and other internal combustion powered machinery such as forklifts, tractors and excavators. Related elements for control of relevant electrical systems are also found on hybrid vehicles and electric cars.

In transportation, collision avoidance is the maintenance of systems and practices designed to prevent vehicles from colliding with each other. They perceive the environment with sensors and prevent collisions using the data collected from the sensors. Collision avoidance is used in autonomous vehicles, aviation, trains and water transport. Examples of collision avoidance include:

<span class="mw-page-title-main">Nira Dynamics AB</span> Automotive research company

NIRA Dynamics AB is a Swedish company focusing on research and development of signal processing and control systems for the automotive industry. It supplies automotive original equipment manufacturers (OEMs) and suppliers in Europe, North America, Latin America, and Asia with its products and systems. In 2021, the number of vehicles equipped with NIRA's main product, TPI, exceeded the benchmark of 75,000,000.

<span class="mw-page-title-main">Automated emergency braking system</span> Vehicle safety technology

The World Forum for Harmonization of Vehicle Regulations define AEBS. UN ECE regulation 131 requires a system which can automatically detect a potential forward collision and activate the vehicle braking system to decelerate a vehicle with the purpose of avoiding or mitigating a collision. UN ECE regulation 152 says deceleration has to be at least 5 metres per second squared.

References

  1. "Volvo Cars - YouTube". YouTube .
  2. "Volvo Cars - YouTube". YouTube .