This article relies largely or entirely on a single source .(April 2007) |
Actual cubic feet per minute (ACFM) is a unit of volumetric flow. It is commonly used by manufacturers of blowers and compressors. [1] This is the actual gas delivery with reference to inlet conditions, whereas cubic foot per minute (CFM) is an unqualified term and should only be used in general and never accepted as a specific definition without explanation. Since the volumetric capacity refers to the volume of air or other gas at the inlet to the unit, it is often referred to as "inlet cubic feet per minute" (ICFM).
Actual cubic feet per minute is the volume of gas and air flowing anywhere in a system independent of its density. If the system were moving air at exactly the "standard" condition, then ACFM would equal Standard cubic feet per minute (SCFM). However, this usually is not the case as the most important change between these two definitions is the pressure. To move air, either a positive pressure or a vacuum must be created. When positive pressure is applied to a standard cubic foot of air or other gas, it gets smaller. When a vacuum is applied to a standard cubic foot of gas, it expands. The volume of gas after it is pressurized or rarefied is referred to as its "actual" volume.
The term cubic feet per minute (CFM) is ambiguous when it comes to the mass of gas that passes through a certain point because gas is compressible. If the pressure is doubled, then, for an ideal gas, the mass of the gas that passes by will also be double for the same rate of flow in cubic feet per minute. For instance, a centrifugal fan is a constant CFM device or a constant volume device, meaning that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather than a constant mass. This means that the air velocity in a system is fixed even though mass flow rate through the fan is not.
Standard cubic feet per minute (SCFM) is a volumetric flow-rate corrected to a set of "standardized" conditions of pressure, temperature, and relative humidity. The standard conditions are often defined as 14.7 psia, temperature 70°F and relative humidity 0%, but the conditions may vary depending on the "standard" used. (See Standard conditions for temperature and pressure).
Normal cubic feet per minute (NCFM) refers to air at normal conditions, such as 14.7 psia, 68°F, 36% relative humidity. However, there is not an agreed upon definition for what constitutes normal conditions.
Free air delivery (FAD) indicates delivered air, referred to as "free air", at inlet conditions.
Ratings found in centrifugal fan performance tables and curves are based on standard cubic feet per minute (SCFM). Fan manufacturers define standard air as clean, dry air with a density of 0.075 pounds mass per cubic foot, with the atmospheric pressure at sea level of 29.92 inches of mercury and a temperature of 70°F. Selecting a centrifugal fan to operate at conditions other than standard air requires adjustment to both static pressure and brake horsepower. The volume of air will not be affected in a given system because a fan will move the same amount of air regardless of the air density.
If a centrifugal fan is to operate at a non-standard density, then corrections must be made to static pressure and brake horsepower. At higher than standard elevation, usually sea level, and higher than standard temperature (70°F), air density is lower than standard density (0.075 pounds per cubic foot). Centrifugal fans that are specified for continuous operation at higher temperatures need to be selected taking into account air density corrections. Again, a centrifugal fan is a constant volume device that will move the same amount of air at two different temperatures.
If, for example, a centrifugal fan moves 1,000 CFM at 70°F it will also move 1,000 CFM at 200°F. The air volume delivered by the centrifugal fan is not affected by density. However, since the 200°F air weighs much less than the 70°F air, the centrifugal fan will create less static pressure and will require less brake horsepower. When a centrifugal fan is specified for a given CFM and static pressure at conditions other than standard, an air density correction factor must be applied to select the proper size fan to meet the new condition. Since 200°F air weighs only 80% of 70°F air, the centrifugal fan will create less pressure. To get the actual pressure required at 200°F, the designer would have to multiply the pressure at standard conditions by an air density correction factor of 0.8 (i.e., 0.8/ 1.0) to get the system to operate correctly. To get the actual horsepower at 200°F, the designer would have to multiply the brake horsepower at standard conditions by the air density correction factor.
The centrifugal fan performance tables provide the fan revolutions per minute (RPM) and brake horsepower requirements for the given CFM and static pressure at standard air density (0.075 pounds per cubic foot). When the centrifugal fan performance is not at standard conditions, the performance must be converted to standard conditions before entering the performance tables. Centrifugal fans rated by the Air Movement and Control Association (AMCA) are tested in laboratories with test setups that simulate installations that are typical for that type of fan. Usually they are tested and rated as one of four standard installation types as designated in AMCA Standard 210.
AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed fans to determine airflow rate, pressure, electric power and energy efficiency, at a given speed of rotation. The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan testing so that ratings provided by various manufacturers are on the same basis and may be compared. For this reason, fans must be rated in SCFM.
Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are the mechanical horsepower, which is about 745.7 watts, and the metric horsepower, which is approximately 735.5 watts.
Standard temperature and pressure (STP) are various standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted standards. Other organizations have established a variety of alternative definitions for their standard reference conditions.
The cubic foot is an imperial and US customary (non-metric) unit of volume, used in the United States and the United Kingdom. It is defined as the volume of a cube with sides of one foot in length. Its volume is 28.3168 L.
An air compressor is a machine that takes ambient air from the surroundings and discharges it at a higher pressure. It is an application of a gas compressor and a pneumatic device that converts mechanical power into potential energy stored in compressed air, which has many uses. A common application is to compress air into a storage tank, for immediate or later use. When the delivery pressure reaches its set upper limit, the compressor is shut off, or the excess air is released through an overpressure valve. The compressed air is stored in the tank until it is needed. The pressure energy provided by the compressed air can be used for a variety of applications such as pneumatic tools as it is released. When tank pressure reaches its lower limit, the air compressor turns on again and re-pressurizes the tank. A compressor is different from a pump because it works on a gas, while pumps work on a liquid.
In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are:
The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes, plus some formulas by which those values were derived. The International Organization for Standardization (ISO) publishes the ISA as an international standard, ISO 2533:1975. Other standards organizations, such as the International Civil Aviation Organization (ICAO) and the United States Government, publish extensions or subsets of the same atmospheric model under their own standards-making authority.
A standard cubic foot (scf) is a unit representing the amount of gas (such as natural gas) contained in a volume of one cubic foot at reference temperature and pressure conditions. It is the unit commonly used when following the customary system, a collection of standards set by the National Institute of Standards and Technology. Another unit used for the same purpose is the standard cubic metre (Sm3), derived from SI units, representing the amount of gas contained in a volume of one cubic meter at different reference conditions. The reference conditions depend on the type of gas and differ from other standard temperature and pressure conditions.
Standard cubic feet per minute (SCFM) is the molar flow rate of a gas expressed as a volumetric flow at a "standardized" temperature and pressure thus representing a fixed number of moles of gas regardless of composition and actual flow conditions. It is related to the mass flow rate of the gas by a multiplicative constant which depends only on the molecular weight of the gas. There are different standard conditions for temperature and pressure, so care is taken when choosing a particular standard value. Worldwide, the "standard" condition for pressure is variously defined as an absolute pressure of 101,325 pascals, 1.0 bar, 14.73 psia, or 14.696 psia and the "standard" temperature is variously defined as 68 °F, 60 °F, 0 °C, 15 °C, 20 °C, or 25 °C. The relative humidity is also included in some definitions of standard conditions.
An air flow bench is a device used for testing the internal aerodynamic qualities of an engine component and is related to the more familiar wind tunnel.
Atkinson resistance is commonly used in mine ventilation to characterise the resistance to airflow of a duct of irregular size and shape, such as a mine roadway. It has the symbol and is used in the square law for pressure drop,
A rotary-screw compressor is a type of gas compressor, such as an air compressor, that uses a rotary-type positive-displacement mechanism. These compressors are common in industrial applications and replace more traditional piston compressors where larger volumes of compressed gas are needed, e.g. for large refrigeration cycles such as chillers, or for compressed air systems to operate air-driven tools such as jackhammers and impact wrenches. For smaller rotor sizes the inherent leakage in the rotors becomes much more significant, leading to this type of mechanism being less suitable for smaller compressors than piston compressors.
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and was updated in 1962, 1966, and 1976. It is largely consistent in methodology with the International Standard Atmosphere, differing mainly in the assumed temperature distribution at higher altitudes.
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate.
The Air Movement and Control Association International, Inc. (AMCA) is an American trade body that sets standards for Heating, Ventilation and Air Conditioning (HVAC) equipment. It rates fan balance and vibration, aerodynamic performance, air density, speed and efficiency.
A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, or squirrel-cage fan. Tiny ones used in computers are sometimes called biscuit blowers. These fans move air from the rotating inlet of the fan to an outlet. They are typically used in ducted applications to either draw air through ductwork/heat exchanger, or push air through similar impellers. Compared to standard axial fans, they can provide similar air movement from a smaller fan package, and overcome higher resistance in air streams.
Industrial fans and blowers are machines whose primary function is to provide and accommodate a large flow of air or gas to various parts of a building or other structures. This is achieved by rotating a number of blades, connected to a hub and shaft, and driven by a motor or turbine. The flow rates of these mechanical fans range from approximately 200 cubic feet (5.7 m3) to 2,000,000 cubic feet (57,000 m3) per minute. A blower is another name for a fan that operates where the resistance to the flow is primarily on the downstream side of the fan.
Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.
The standard liter per minute is a unit of volumetric flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). Until 1982, STP was defined as a temperature of 273.15 K and an absolute pressure of 101.325 kPa (1 atm). Since 1982, STP is defined as a temperature of 273.15 K and an absolute pressure of 100 kPa (1 bar).
A high-volume low-speed (HVLS) fan is a type of mechanical fan greater than 7 feet (2.1 m) in diameter. HVLS fans are generally ceiling fans although some are pole mounted. HVLS fans move slowly and distribute large amounts of air at low rotational speed– hence the name "high volume, low speed."
Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.