Standard cubic feet per minute

Last updated

Standard cubic feet per minute (SCFM) is the molar flow rate of a gas expressed as a volumetric flow at a "standardized" temperature and pressure thus representing a fixed number of moles of gas regardless of composition and actual flow conditions. It is related to the mass flow rate of the gas by a multiplicative constant which depends only on the molecular weight of the gas. There are different standard conditions for temperature and pressure, so care is taken when choosing a particular standard value. Worldwide, the "standard" condition for pressure is variously defined as an absolute pressure of 101,325 pascals (Atmospheric pressure), 1.0 bar (i.e., 100,000 pascals), 14.73 psia, or 14.696  psia and the "standard" temperature is variously defined as 68 °F, 60 °F, 0 °C, 15 °C, 20 °C, or 25 °C. The relative humidity (e.g., 36% or 0%) is also included in some definitions of standard conditions.

Contents

In Europe, the standard temperature is most commonly defined as 0 °C, but not always. In the United States, the EPA defines standard conditions for volume and volumetric flow as a temperature of 293 K (68 °F) and a pressure of 101.3 kilopascals (29.92 in. Hg) [1] , although various industry users may use definitions from 60 °F to 78 °F.

A variation in standard temperature can result in a significant volumetric variation for the same mass flow rate. For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating a "standard" flow value.

In countries using the SI metric system of units, the term "normal cubic metre" (Nm3) is very often used to denote gas volumes at some normalized or standard condition. Again, as noted above, there is no universally accepted set of normalized or standard conditions.

UnitPressureTemperatureMoles
Nm³1.01325 bar a0 °C0.0446158 kmol
Sm³1.01325 bar a15 °C0.0422937 kmol
SCF14.696 psi a60 °F0.002641 lbmol

Actual cubic feet per minute

Actual cubic foot per minute (ACFM) is the volume of gas flowing anywhere in a system, taking into account its temperature and pressure. If the system were moving a gas at exactly the "standard" condition, then ACFM would equal SCFM. This usually is not the case as the most important change between these two definitions is the pressure. To move a gas, a positive pressure or a vacuum must be created. When positive pressure is applied to a standard cubic foot of gas, it is compressed. When a vacuum is applied to a standard cubic foot of gas, it expands. The volume of gas after it is pressurized or rarefied is referred to as its "actual" volume.

SCF and ACF for an ideal gas are related in accordance with the combined gas law: [2] [3]

Defining standard conditions by the subscript 1 and actual conditions by the subscript 2, then: [2] [4]

where is in absolute pressure units and is in absolute temperature units (i.e., either kelvins or degrees Rankine).

This is only valid when at a pressure and temperature close to standard conditions. For non-ideal gasses (most gasses) a compressibility factor "Z" is introduced to allow for non-ideality. To introduce the compressibility factor to the equation divide ACF by "Z".

Cubic feet per minute

Cubic feet per minute (CFM) is an often confusing term because it has no single definition that applies to all instances. Gases are compressible, which means that a figure in cubic feet per minute cannot necessarily be compared with another figure when it comes the mass of the gas. To further confuse the issue, a centrifugal fan is a constant CFM device or a constant volume device. This means that, provided the fan speed remains constant, a centrifugal fan will pump a constant volume of air. This is not the same as pumping a constant mass of air. Again, the fan will pump the same volume, though not mass, at any other air density. This means that the air velocity in a system is the same even though mass flow rate through the fan is not.

See also

Related Research Articles

<span class="mw-page-title-main">Fluid dynamics</span> Aspects of fluid mechanics involving flow

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Standard temperature and pressure (STP) or Standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted. Other organizations have established a variety of other definitions.

<span class="mw-page-title-main">Specific heat capacity</span> Heat required to increase temperature of a given unit of mass of a substance

In thermodynamics, the specific heat capacity of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.

<span class="mw-page-title-main">Avogadro constant</span> Fundamental metric system constant defined as the number of particles per mole

The Avogadro constant, commonly denoted NA or L, is an SI defining constant with an exact value of 6.02214076×1023 mol-1 (reciprocal moles). It is defined as the number of constituent particles (usually molecules, atoms, or ions) per mole (SI unit) and used as a normalization factor in the amount of substance in a sample. In practice, its value is often approximated to 6.02×1023 mol-1 or 6.022×1023 mol-1. The constant is named after the physicist and chemist Amedeo Avogadro (1776–1856).

The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K−1⋅m−3.

The molar gas constant is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

<span class="mw-page-title-main">Compressibility</span> Measure of the relative volume change of a fluid or solid as a response to a pressure change

In thermodynamics and fluid mechanics, the compressibility is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure change. In its simple form, the compressibility may be expressed as

<span class="mw-page-title-main">Cubic foot</span> Imperial and US customary (non-metric) unit of volume

The cubic foot is an imperial and US customary (non-metric) unit of volume, used in the United States and the United Kingdom. It is defined as the volume of a cube with sides of one foot in length. Its volume is 28.3168 L.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.

Actual cubic feet per minute (ACFM) is a unit of volumetric flow. It is commonly used by manufacturers of blowers and compressors. This is the actual gas delivery with reference to inlet conditions, whereas cubic foot per minute (CFM) is an unqualified term and should only be used in general and never accepted as a specific definition without explanation. Since the volumetric capacity refers to the volume of air or other gas at the inlet to the unit, it is often referred to as "inlet cubic feet per minute" (ICFM).

<span class="mw-page-title-main">Compressibility factor</span> Correction factor which describes the deviation of a real gas from ideal gas behavior

In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure. It is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behaviour. In general, deviation from ideal behaviour becomes more significant the closer a gas is to a phase change, the lower the temperature or the larger the pressure. Compressibility factor values are usually obtained by calculation from equations of state (EOS), such as the virial equation which take compound-specific empirical constants as input. For a gas that is a mixture of two or more pure gases, the gas composition must be known before compressibility can be calculated.
Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts that plot as a function of pressure at constant temperature.

A standard cubic foot (scf) is a unit representing the amount of gas (such as natural gas) contained in a volume of one cubic foot at reference temperature and pressure conditions. It is the unit commonly used when following the customary system, a collection of standards set by the National Institute of Standards and Technology. Another unit used for the same purpose is the standard cubic metre (Sm3), derived from SI units, representing the amount of gas contained in a volume of one cubic meter at different reference conditions. The reference conditions depend on the type of gas and differ from other standard temperature and pressure conditions.

Various governmental agencies involved with environmental protection and with occupational safety and health have promulgated regulations limiting the allowable concentrations of gaseous pollutants in the ambient air or in emissions to the ambient air. Such regulations involve a number of different expressions of concentration. Some express the concentrations as ppmv and some express the concentrations as mg/m3, while others require adjusting or correcting the concentrations to reference conditions of moisture content, oxygen content or carbon dioxide content. This article presents a set of useful conversions and formulas for air dispersion modeling of atmospheric pollutants and for complying with the various regulations as to how to express the concentrations obtained by such modeling.

Million standard cubic feet per day is a unit of measurement for gases that is predominantly used in the United States. It is frequently abbreviated MMSCFD. MMSCFD is commonly used as a measure of natural gas, liquefied petroleum gas, compressed natural gas and other gases that are extracted, processed or transported in large quantities.

<span class="mw-page-title-main">Centrifugal fan</span> Mechanical fan that forces fluid to move radially outward

A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, or squirrel-cage fan. Tiny ones used in computers are sometimes called biscuit blowers. These fans move air from the rotating inlet of the fan to an outlet. They are typically used in ducted applications to either draw air through ductwork/heat exchanger, or push air through similar impellers. Compared to standard axial fans, they can provide similar air movement from a smaller fan package, and overcome higher resistance in air streams.

Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.

<span class="mw-page-title-main">Volume (thermodynamics)</span> Extensive parameter used to describe a thermodynamic systems state

In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical region covered by a system may or may not coincide with a control volume used to analyze the system.

The standard liter per minute is a unit of mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). Until 1982, STP was defined as a temperature of 273.15 K and an absolute pressure of 101.325 kPa (1 atm). Since 1982, STP is defined as a temperature of 273.15 K and an absolute pressure of 100 kPa (1 bar).

Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³STP/min. Another expression of it would be Nml/min. These standard conditions vary according to different regulatory bodies. One example of standard conditions for the calculation of SCCM is = 0 °C and = 1.01 bar and a unity compressibility factor = 1. This example is for the semi-conductor-manufacturing industry.

References

  1. "Code of Federal Regulations Title 40 Chapter I Subchapter C Part 63 Subpart A § 63.2 Definitions". govinfo.gov. 2023-01-01. Retrieved 2024-04-24. "Code of Federal Regulations Title 40 Chapter I Subchapter C Part 63 Subpart A § 63.3 Units and abbreviations". govinfo.gov. 2023-01-01. Retrieved 2024-04-24.
  2. 1 2 Controls Warehouse website (scroll down to "Gas Flow Measurement")
  3. Mark Ladd (1998). Introduction to Physical Chemistry (3rd ed.). Cambridge University Press. ISBN   0-521-57881-7. (Equation 5.2, page 200)
  4. Robert J. Heinsohn and John M. Cimbala (2003). Indoor Air Quality Engineering: Environmental Health and Control of Indoor Pollutants. CRC Press. ISBN   0-8247-4061-0. (page 33)