Adam Burrows | |
---|---|
Nationality | American |
Alma mater | Princeton University Massachusetts Institute of Technology |
Scientific career | |
Fields | Astrophysics |
Institutions | Princeton University |
Adam Burrows is a noted professor of astrophysical sciences at Princeton University.
Burrows received his undergraduate degree in physics from Princeton University and his Ph.D. in physics from the Massachusetts Institute of Technology.
Adam Burrow's has a wife and one step-daughter and currently lives and the town of Princeton, New Jersey. Burrows's primary research interests are supernova theory, [1] exoplanet and brown dwarf theory, planetary atmospheres, computational astrophysics, and nuclear astrophysics. Well known as a pioneer in the theory of exoplanets, brown dwarfs, and supernovae, he has written numerous fundamental and influential papers and reviews on these subjects during the last ~30 years. He has collaborated with more than 150 co-authors on more than 300 papers and given more than 300 invited talks and colloquia.
He is a past chair of the board on Physics and Astronomy (BPA) of the National Research Council (NRC) of the National Academy of Sciences; was the BPA Liaison to the 2010 Decadal Survey of Astronomy; and has been a consultant for the American Museum of Natural History in New York. He has served on the Committee on Astronomy and Astrophysics (CAA) of the NRC; on the NRC Rare Isotope Science Assessment Committee; on the Subcommittee on the Implementation of the DOE Long-Range Plan for Nuclear Physics; as the chair of the Kavli Institute for Theoretical Physics (KITP) advisory board; as the co-chair of NASA's Universe Subcommittee; as the chair of NASA's Origins Subcommittee; as a co-chair of NASA's Strategic Roadmapping Committee "Search for Earth-like Planets"; as a co-chair of NASA's Origins/SEUS Roadmapping committee; and as a primary author of NASA 2003 Origins Roadmap. Burrows is also the director of the Princeton Planets and Life Certificate Program and is on the board of trustees of the Aspen Center for Physics.
In 2011, Burrows delivered a talk, "Explosive Astrophysics: Supernovae and Gamma Ray Bursts," at the first Starmus Festival in the Canary Islands. The talk was published in the book Starmus: 50 Years of Man in Space. [2]
Burrows is a fellow of the American Academy of Arts and Sciences, a fellow of the American Association for the Advancement of Science, a fellow of the American Physical Society (1992), [3] and a fellow of the Princeton Center for Theoretical Science (PCTS), the 2010 Beatrice M. Tinsley Centennial Professor, and a former Alfred P. Sloan Fellow.
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place in a white dwarf; what light it radiates is from its residual heat. The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name white dwarf was coined by Willem Jacob Luyten in 1922.
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main-sequence stars. Their mass is approximately 13 to 80 times that of Jupiter (MJ)—not big enough to sustain nuclear fusion of ordinary hydrogen (1H) into helium in their cores, but massive enough to emit some light and heat from the fusion of deuterium (2H). The most massive ones can fuse lithium (7Li).
A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs cannot be easily observed. From Earth, not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the star nearest to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the fusing stars in the Milky Way.
HD 209458 b is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years from the Solar System. The radius of the planet's orbit is 0.047 AU, or one-eighth the radius of Mercury's orbit. This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C. Its mass is 220 times that of Earth and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.
2M1207, 2M1207A or 2MASS J12073346–3932539 is a brown dwarf located in the constellation Centaurus; a companion object, 2M1207b, may be the first extrasolar planetary-mass companion to be directly imaged, and is the first discovered orbiting a brown dwarf.
Gliese 876 is a red dwarf star 15.2 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after GJ 1061, YZ Ceti, Tau Ceti, and Wolf 1061; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.
54 Piscium is an orange dwarf star approximately 36 light-years away in the constellation of Pisces. In 2003, an extrasolar planet was confirmed to be orbiting the star, and in 2006, a brown dwarf was also discovered orbiting it.
Sudarsky's classification of gas giants for the purpose of predicting their appearance based on their temperature was outlined by David Sudarsky and colleagues in the paper Albedo and Reflection Spectra of Extrasolar Giant Planets and expanded on in Theoretical Spectra and Atmospheres of Extrasolar Giant Planets, published before any successful direct or indirect observation of an extrasolar planet atmosphere was made. It is a broad classification system with the goal of bringing some order to the likely rich variety of extrasolar gas-giant atmospheres.
A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.
Gliese 876 c is an exoplanet orbiting the red dwarf Gliese 876, taking about 30 days to complete an orbit. The planet was discovered in April 2001 and is the second planet in order of increasing distance from its star.
Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.
Upsilon Andromedae b, formally named Saffar, is an extrasolar planet approximately 44 light-years away from the Sun in the constellation of Andromeda. The planet orbits its host star, the F-type main-sequence star Upsilon Andromedae A, approximately every five days. Discovered in June 1996 by Geoffrey Marcy and R. Paul Butler, it was one of the first hot Jupiters to be discovered. It is also one of the first non-resolved planets to be detected directly. Upsilon Andromedae b is the innermost-known planet in its planetary system.
47 Ursae Majoris b, formally named Taphao Thong, is a gas planet and an extrasolar planet approximately 46 light-years from Earth in the constellation of Ursa Major. The planet was discovered located in a long-period orbit around the star 47 Ursae Majoris in January 1996 and as of 2011 it is the innermost of three known planets in its planetary system. It has a mass at least 2.53 times that of Jupiter.
The Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by far the most massive planet in the Solar System. It is approximately 2.5 times as massive as all of the other planets in the Solar System combined.
2MASS J15074769−1627386 is a brown dwarf in the constellation Libra, located about 23.9 light-years from Earth. It was discovered in 1999 by I. Neill Reid et al. It belongs to the spectral class L5; its surface temperature is 1,300 to 2,000 kelvins. As with other brown dwarfs of spectral type L, its spectrum is dominated by metal hydrides and alkali metals. Its spectrum also has a weak silicate absorption band and highly variable water absorption band, indicating complicated clouds and haze structures.
J. Davy Kirkpatrick is an American astronomer at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, California. Kirkpatrick's research was named one of the top ten science accomplishments of the first ten years (1992–2002) of the W. M. Keck Observatory and one of the Top 100 Stories of 2011 by Discover Magazine.
In spectroscopy, collision-induced absorption and emission refers to spectral features generated by inelastic collisions of molecules in a gas. Such inelastic collisions may induce quantum transitions in the molecules, or the molecules may form transient supramolecular complexes with spectral features different from the underlying molecules. Collision-induced absorption and emission is particularly important in dense gases, such as hydrogen and helium clouds found in astronomical systems.
Adam Burrows [a supernova expert at the University of Arizona in Tucson] did...