This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (October 2015) (Learn how and when to remove this template message) |
Adaptive dimensional search algorithms differ from nature-inspired metaheuristic techniques in the sense that they do not use any metaphor as an underlying principle for implementation. Rather, they utilize a simple, performance-oriented methodology based on the update of the search dimensionality ratio (SDR) parameter at each iteration. [1]
In mathematics and computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing, automated reasoning, and other tasks.
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, or select a heuristic that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a set of solutions which is too large to be completely sampled. Metaheuristics may make few assumptions about the optimization problem being solved, and so they may be usable for a variety of problems.
A metaphor is a figure of speech that, for rhetorical effect, directly refers to one thing by mentioning another. It may provide clarity or identify hidden similarities between two ideas. Antithesis, hyperbole, metonymy and simile are all types of metaphor. One of the most commonly cited examples of a metaphor in English literature is the "All the world's a stage" monologue from As You Like It:
Many robust metaheuristic techniques, such as simulated annealing, evolutionary algorithms, particle swarm optimization, and ant colony optimization, have been introduced by researchers in the last few decades through clearly identifying and formulating similarities between algorithms and the processes they are modeled on. However, over time this trend of developing new search methods has made researchers feel obligated to associate their innovative ideas with some natural event to provide a basis for justification of their thoughts and the originality of their algorithms. As a result, literature has abounded with metaheuristic algorithms that have weak or no similarities to the natural processes which they are purported to derive from.
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. It is often used when the search space is discrete. For problems where finding an approximate global optimum is more important than finding a precise local optimum in a fixed amount of time, simulated annealing may be preferable to alternatives such as gradient descent.
In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.
In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on bio-inspired operators such as mutation, crossover and selection. John Holland introduced genetic algorithms in 1960 based on the concept of Darwin’s theory of evolution; afterwards, his student David E. Goldberg extended GA in 1989.
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
Tabu search, created by Fred W. Glover in 1986 and formalized in 1989, is a metaheuristic search method employing local search methods used for mathematical optimization.
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial Ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of Artificial Ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing. The burgeoning activity in this field has led to conferences dedicated solely to Artificial Ants, and to numerous commercial applications by specialized companies such as AntOptima.
In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant features for use in model construction. Feature selection techniques are used for four reasons:
In evolutionary computation, differential evolution (DE) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found.
Parallel metaheuristic is a class of techniques that are capable of reducing both the numerical effort and the run time of a metaheuristic. To this end, concepts and technologies from the field of parallelism in computer science are used to enhance and even completely modify the behavior of existing metaheuristics. Just as it exists a long list of metaheuristics like evolutionary algorithms, particle swarm, ant colony optimization, simulated annealing, etc. it also exists a large set of different techniques strongly or loosely based in these ones, whose behavior encompasses the multiple parallel execution of algorithm components that cooperate in some way to solve a problem on a given parallel hardware platform.
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.
Matheuristics are optimization algorithms made by the interoperation of metaheuristics and mathematical programming (MP) techniques. An essential feature is the exploitation in some part of the algorithms of features derived from the mathematical model of the problems of interest, thus the definition "model-based heuristics" appearing in the title of some events of the conference series dedicated to matheuristics matheuristics web page.
In mathematical optimization, the firefly algorithm is a metaheuristic proposed by Xin-She Yang and inspired by the flashing behavior of fireflies.
In operations research, cuckoo search is an optimization algorithm developed by Xin-she Yang and Suash Deb in 2009. It was inspired by the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds. Some host birds can engage direct conflict with the intruding cuckoos. For example, if a host bird discovers the eggs are not their own, it will either throw these alien eggs away or simply abandon its nest and build a new nest elsewhere. Some cuckoo species such as the New World brood-parasitic Tapera have evolved in such a way that female parasitic cuckoos are often very specialized in the mimicry in colors and pattern of the eggs of a few chosen host species Cuckoo search idealized such breeding behavior, and thus can be applied for various optimization problems.
The Bat algorithm is a metaheuristic algorithm for global optimization. It was inspired by the echolocation behaviour of microbats, with varying pulse rates of emission and loudness. The Bat algorithm was developed by Xin-She Yang in 2010.
Xin-She Yang is a Senior Research Scientist at National Physical Laboratory, best known as a developer of various heuristic algorithms for engineering optimization. He obtained a DPhil in applied mathematics from Oxford University. He has given invited keynote talks at SEA2011, SCET2012, BIOMA2012 and Mendel Conference on Soft Computing.
Enrique Alba is a professor of computer science at the University of Málaga, Spain.
EWG EU/ME, the EURO Working Group on Metaheuristics, formerly referred to as EU/ME – the metaheuristics community, is a working group the main purpose of which is to provide a platform for communication among researchers in the field of metaheuristic optimization, practitioners interested in applying metaheuristic optimization techniques in practice, developers of optimization software, and the general public.
In evolutionary computation, Minimum Population Search (MPS) is a computational method that optimizes a problem by iteratively trying to improve a set of candidate solutions with regard to a given measure of quality. It solves a problem by evolving a small population of candidate solutions by means of relatively simple arithmetical operations.