Aesthetic anterior composite restoration

Last updated

Anterior teeth are some of the most scrutinized teeth, as the size, shape and color of the anterior upper teeth plays an important role in dental aesthetics and smile aesthetics. [1] A few aesthetic anterior problems, such as dental caries, tooth fracture, [2] enamel defects [3] and diastemas, can be solved with composite restorations. Composite restorations can also improve dental aesthetics by changing the shape, color, length and alignment of teeth.

Contents

Medical uses

Some uses of direct composite to restore anterior teeth are in: [4]

  1. Caries management
  2. Repairing fractures of teeth, such as from trauma
  3. Diastema closure
    1. Midline diastema are defined as an interdental space greater than 0.5mm within the maxillary central incisors [5]
    2. Diastema can often considered as esthetic or malocclusion problem [6]
    3. Midline diastema often cited from patient as primary esthetic problem, thus closing them is a commonplace in esthetic dentistry [7]
  4. Improving esthetic by changing shape, colour, length and alignment

Advantages

The advantages of these procedures are: [4] [8] [9] [10]

  1. Minimally invasive - They require minimal (or no) tooth preparation to enhance resistance and retention form
  2. Significant fewer endodontic complications
  3. Re-intervention is easier as restoration are more reversible and amenable to repair
  4. Reduced risk of wear to opposing teeth
  5. Time saving- Only require single appointment
  6. Require no provisional restoration
  7. Lower financial cost
  8. Chipping can be repaired by adding new composite layers, and colour changes sometimes can be fixed by composite resin polishing. [8] [9] [10]

Longevity

The average survival statistics for direct restoration are not encouraging. [4] While there is a lack of conclusive data regarding the longevity of anterior composite restoration, it has been well established that the more complex the restoration, the shorter its lifespan. Clinical studies have found that 60 to 80% of all Class III and V composite resin restorations remain acceptable after 5 years of  clinical service. [11] [12] [13] [14] [15] [16] The main reason for replacement of anterior composite are typically surface discoloration, secondary caries and fracture of restoration. It is generally accepted that Class IV restorations do not last as long as Class III and Class V. One study compared four different anterior composite restoration types over 5 years. [17] Variables assessed included handling characteristics, gingival condition, surface staining, marginal staining, color deterioration, and overall longevity. The Class IV restorations had higher failure rates than Class III or V restorations.

Technique sensitivity

Operators should have detailed anatomical knowledge and artistic skill, for example, optimal properties of natural teeth, tooth proportions and their relationships to each other and to the surrounding soft tissues. Operator also must select appropriate restorative materials that match adjacent residual tooth tissue. [4]

Complications

Possible complications include: [4]

  1. Post-operative sensitivity
  2. Marginal discoloration
  3. Restoration de-bond
  4. Wear of opposing teeth
  5. Iatrogenic damage
  6. Pulpal Injury
  7. Restoration removal results in an increase in cavity size

Fractured tooth

Steps to restore anterior fractured tooth: [2]

  1. A diagnostic cast and wax up [18]
  2. Fabricate lingual matrix -  an impression of the lingual surface using additional silicone (Polyvinyl siloxane) -. [19]
  3. Isolation with rubber dam
  4. Beveling the  margins - [20]
    1. 75 degree bevel at the facial side using diamond bur, followed by infinite bevel extending to middle third.
    2. 45 degree at Lingual side using diamond bur
  5. Etching with phosphoric acid to the enamel including all beveled surfaces
    1. Etching time based on manufacturer’s instruction
    2. Etchant is rinsed off
  6. Application of bonding agent. Agitate the bonding agent against the enamel surface. Use a gentle stream of air to evaporate the solvent. Light polymerize the bonding agent
  7. Seat lingual matrix, ensuring proper fit.
  8. Apply a thin layer of composite onto matrix. Next thicken the area near the fracture line to hide the demarcation.
  9. Shape the body shade into mimic anatomical lobes of the specific tooth, leaving 1 mm short of the incisal edge to be used with more translucent enamel shades to create halo effect
  10. Finish the surface with polishing disks, with care taken to mimic the contours of the tocontralateraloth. [2]

Direct composite veneer

Veneer preparation.jpg
Veneer preparation
Composite veneer.jpg
Composite veneer

Dental veneers covers the front surface of teeth. Veneers with direct resins are one of the common treatment options for clinical applications following the developments in adhesive and restorative dentistry in recent years. These restorations are applied on prepared tooth surfaces or even without any preparation, with an adhesive agent and a composite resin material directly in a single visit in the dental clinic. [21] If done properly, the aesthetic outcomes of direct composite veneers are very satisfactory in addition to superior optical and physical properties. [21] In recent history these restorations were thought to be temporary alternatives to indirect ceramic veneers; however, they are no longer named 'day savior fillings' today. These restorations are called minimally invasive, functional and long-lasting 'direct aesthetic restorations' that perfectly emulate natural dental tissues even in anterior area. [22] [23] 3,4 Discolorations of teeth or restorations, dental malformations or mal-positions, diastemas, crown fractures and abrasive or erosive defects are some examples of up-to-date indications of direct composite veneers. [21] 1 Enamel hypoplasia is a developmental malformation generally resulting in poor aesthetics, tooth sensitivity, malocclusion and predisposition to dental caries. [24] 5 Direct composite veneer restorations where the whole labial surface is covered with resin, are good treatment options in such cases.,6 [25] The conventional workflow sequence of a direct composite veneer is:

  1. Determine if composite veneers is the best option for the patient.
    1. Advantage of composite veneers is it takes much less time compared to a lab-fabricated veneer, it only takes one treatment for the preparation and veneer buildup.
    2. Secondly it is a cheaper option compared to other veneer options.
  2. Choosing of the composite shade. Composite button samples of different shades are placed on teeth and a dental photography taken
  3. impression and cast taken, wax up done on teeth, a silicone index guidance is fabricated
  4. Rubber dam as isolation
  5. Preparation is done by drilling of a thin layer of tooth structure. depth grooves are used to make the preparation more uniformed.
  6. Composite layering with dentin color, and the incisal area with enamel color
  7. Finishing with white stone bur, taking care to follow the natural anatomy of adjacent teeth if present
  8. Polishing with interdental strip and polishing disk with grains of increasing fineness, finally with a composite polishing paste
  9. Follow up with the patient regularly [3]

New method for Aesthetic Anterior direct composite veneers

In the past two and a half years the use of 3D designed and then printed plastic models has become very popular worldwide. The dentist uses a clear, Vinyl Polysiloxane material to make an index of the 3D printed model and this is placed over the patient's two and a flowable highly filled resin is injected into the mould and light cured.

Composite restoration closing diastema

Midline diastema (spacing in upper teeth) is a common occurrence in the population. [26] An arbitrary number for the spacing between the teeth to consider as midline diastema is a width of 0.5 from a proximal surface of a teeth to the proximal surface of adjacent teeth. [27] Midline diastema usually occur in the upper teeth compared to lower. The cause of this spacing includes but not limited to microdontia, labial frenulum, peg-shaped lateral incisors, mesiodens, cysts in midlene region, tongue trusting, finger sucking, dental malformations, maxillary incisor proclination, genetics, imperfect joining of interdental septum, dental skeletal discrepancies. [28] [29] The technical factors affecting the course of treatment of the closing of midline diastema includes the size of the existing central incisors, the amount of reduction necessary, the morphology of existing tooth, and the subsequent possibility of a veneer or crown treatment needs to be taken into account, the patient factors affecting the course of treatment includes economic, psychological and time factors of the patient. [30] [31] With a successful diastema closure, the normal arrangement of teeth can be established [32] Continuous improvement in material science and methodology enables the aesthetics of composite restoration to be of a high standard [33] and realistic in terms of aesthetic, physical and mechanical properties. Composites provides an array of hues, colour and opacities for composite layering techniques which mimics the opalescence of natural teeth. [34] [35] The conventional workflow sequence for a diastema closure is 1)Shade selection was done for dentin shade and enamel shade. Composite button samples of different shades are placed on teeth and a dental photography taken to verify 2)Rubber dam isolation 3)Placing a retraction cord. 3)Etching enamel surface, 4)Application of bonding agent. Agitate the bonding agent against the enamel surface. Use a gentle stream of air to evaporate the solvent. Light polymerize the bonding agent 5)Layer dentin layer, followed by enamel shade 6)finishing with white stone bur, taking care to follow the natural anatomy 7)polishing with interdental strip and polishing disk with grains of increasing fineness, finally with a composite polishing paste. [36]

Related Research Articles

Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose.

Cosmetic dentistry is generally used to refer to any dental work that improves the appearance of teeth, gums and/or bite. It primarily focuses on improvement in dental aesthetics in color, position, shape, size, alignment and overall smile appearance. Many dentists refer to themselves as "cosmetic dentists" regardless of their specific education, specialty, training, and experience in this field. This has been considered unethical with a predominant objective of marketing to patients. The American Dental Association does not recognize cosmetic dentistry as a formal specialty area of dentistry. However, there are still dentists that promote themselves as cosmetic dentists.

<span class="mw-page-title-main">Bridge (dentistry)</span> Dental restoration for missing teeth

A bridge is a fixed dental restoration used to replace one or more missing teeth by joining an artificial tooth definitively to adjacent teeth or dental implants.

Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.

Tooth whitening or tooth bleaching is the process of lightening the color of human teeth. Whitening is often desirable when teeth become yellowed over time for a number of reasons, and can be achieved by changing the intrinsic or extrinsic color of the tooth enamel. The chemical degradation of the chromogens within or on the tooth is termed as bleaching.

<span class="mw-page-title-main">Crown (dental restoration)</span> Dental prosthetic that recreates the visible portion of a tooth

In dentistry, a crown or a dental cap is a type of dental restoration that completely caps or encircles a tooth or dental implant. A crown may be needed when a large dental cavity threatens the health of a tooth. Some dentists will also finish root canal treatment by covering the exposed tooth with a crown. A crown is typically bonded to the tooth by dental cement. They can be made from various materials, which are usually fabricated using indirect methods. Crowns are used to improve the strength or appearance of teeth and to halt deterioration. While beneficial to dental health, the procedure and materials can be costly.

<span class="mw-page-title-main">Dental composite</span> Substance used to fill cavities in teeth

Dental composite resins are dental cements made of synthetic resins. Synthetic resins evolved as restorative materials since they were insoluble, of good tooth-like appearance, insensitive to dehydration, easy to manipulate and inexpensive. Composite resins are most commonly composed of Bis-GMA and other dimethacrylate monomers, a filler material such as silica and in most applications, a photoinitiator. Dimethylglyoxime is also commonly added to achieve certain physical properties such as flow-ability. Further tailoring of physical properties is achieved by formulating unique concentrations of each constituent.

<span class="mw-page-title-main">Dental abrasion</span> Medical condition

Abrasion is the non-carious, mechanical wear of tooth from interaction with objects other than tooth-tooth contact. It most commonly affects the premolars and canines, usually along the cervical margins. Based on clinical surveys, studies have shown that abrasion is the most common but not the sole aetiological factor for development of non-carious cervical lesions (NCCL) and is most frequently caused by incorrect toothbrushing technique.

<span class="mw-page-title-main">Dental erosion</span> Medical condition

Acid erosion is a type of tooth wear. It is defined as the irreversible loss of tooth structure due to chemical dissolution by acids not of bacterial origin. Dental erosion is the most common chronic condition of children ages 5–17, although it is only relatively recently that it has been recognised as a dental health problem. There is generally widespread ignorance of the damaging effects of acid erosion; this is particularly the case with erosion due to consumption of fruit juices because they tend to be considered as healthy. Acid erosion begins initially in the enamel, causing it to become thin, and can progress into dentin, giving the tooth a dull yellow appearance and leading to dentin hypersensitivity.

<span class="mw-page-title-main">Abfraction</span> Loss of tooth structure not caused by tooth decay

Abfraction is a theoretical concept explaining a loss of tooth structure not caused by tooth decay. It is suggested that these lesions are caused by forces placed on the teeth during biting, eating, chewing and grinding; the enamel, especially at the cementoenamel junction (CEJ), undergoes large amounts of stress, causing micro fractures and tooth tissue loss. Abfraction appears to be a modern condition, with examples of non-carious cervical lesions in the archaeological record typically caused by other factors.

<span class="mw-page-title-main">Inlays and onlays</span> Restoration procedure in dentistry

In dentistry, inlays and onlays are used to fill cavities, and then cemented in place in the tooth. This is an alternative to a direct restoration, made out of composite, amalgam or glass ionomer, that is built up within the mouth.

<span class="mw-page-title-main">Diastema</span> Gap between two teeth

A diastema is a space or gap between two teeth. Many species of mammals have diastemata as a normal feature, most commonly between the incisors and molars. More colloquially, the condition may be referred to as gap teeth or tooth gap.

<span class="mw-page-title-main">Veneer (dentistry)</span> Layer of material placed over a tooth

In dentistry, a veneer is a layer of material placed over a tooth. Veneers can improve the aesthetics and function of a smile and protect the tooth's surface from damage.

<span class="mw-page-title-main">Glass ionomer cement</span> Material used in dentistry as a filling material and luting cement

A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement, including for orthodontic bracket attachment. Glass-ionomer cements are based on the reaction of silicate glass-powder and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid, altering the properties of the material and its uses. This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate. There are other forms of similar reactions which can take place, for example, when using an aqueous solution of acrylic/itaconic copolymer with tartaric acid, this results in a glass-ionomer in liquid form. An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass-ionomer in liquid form. Tartaric acid plays a significant part in controlling the setting characteristics of the material. Glass-ionomer based hybrids incorporate another dental material, for example resin-modified glass ionomer cements (RMGIC) and compomers.

<span class="mw-page-title-main">Luting agent</span>

A luting agent is a dental cement connecting the underlying tooth structure to a fixed prosthesis. To lute means to glue two different structures together. There are two major purposes of luting agents in dentistry – to secure a cast restoration in fixed prosthodontics, and to keep orthodontic bands and appliances in situ.

<span class="mw-page-title-main">Dental attrition</span>

Dental attrition is a type of tooth wear caused by tooth-to-tooth contact, resulting in loss of tooth tissue, usually starting at the incisal or occlusal surfaces. Tooth wear is a physiological process and is commonly seen as a normal part of aging. Advanced and excessive wear and tooth surface loss can be defined as pathological in nature, requiring intervention by a dental practitioner. The pathological wear of the tooth surface can be caused by bruxism, which is clenching and grinding of the teeth. If the attrition is severe, the enamel can be completely worn away leaving underlying dentin exposed, resulting in an increased risk of dental caries and dentin hypersensitivity. It is best to identify pathological attrition at an early stage to prevent unnecessary loss of tooth structure as enamel does not regenerate.

<span class="mw-page-title-main">Angularis nigra</span> Small triangle-shaped gap which often occurs between the teeth, near the gums

Angularis nigra, Latin for 'black angle', also known as open gingival embrasures, and colloquially known as "black triangle", is the space or gap seen at the cervical embrasure, below the contact point of some teeth. The interdental papilla does not fully enclose the space, leading to an aperture between adjacent teeth. This gap has many causes including gingival recession, and gingival withdrawal post-orthodontic work. Interdental "black triangles" were rated as the third-most-disliked aesthetic problem below caries and crown margins. Treatment of angularis nigra often requires an interdisciplinary approach, involving periodontal, orthodontic and restorative treatment. Possible treatments to correct angularis nigra include addition of composite resin in the space, veneer placement, or gum graft. Angularis nigra is generally only treated based on the aesthetic preference of the patient.

<span class="mw-page-title-main">Molar incisor hypomineralisation</span> Medical condition

Molar incisor hypomineralisation (MIH) is a type of enamel defect affecting, as the name suggests, the first molars and incisors in the permanent dentition. MIH is considered a worldwide problem with a global prevalence of 12.9% and is usually identified in children under 10 years old. This developmental condition is caused by the lack of mineralisation of enamel during its maturation phase, due to interruption to the function of ameloblasts. Peri- and post-natal factors including premature birth, certain medical conditions, fever and antibiotic use have been found to be associated with development of MIH. Recent studies have suggested the role of genetics and/or epigenetic changes to be contributors of MIH development. However, further studies on the aetiology of MIH are required because it is believed to be multifactorial.

Pediatric crowns are dental crowns used for restoring lost or damaged or decayed teeth of children. These crowns encircle the damaged teeth completely and are made of different materials such as ceramic, steel and more.

<span class="mw-page-title-main">Non-carious cervical lesions</span> Dental condition

Non-carious cervical lesions (NCCLs) are a group of lesions that are characterised by a loss of hard dental tissue at the cementoenamel junction (CEJ) region at the neck of the tooth, without the action of microorganisms or inflammatory processes. These lesions vary in shape from regular depressions that look like a dome or a cup, to deep wedge-shaped defects with the apex pointing inwards. NCCLs can occur either above or below the level of the gum, at any of the surfaces of the teeth.

References

  1. Petricević, Nikola; Stipetić, Jasmina; Antonić, Robert; Borcić, Josipa; Strujić, Mihovil; Kovacić, Ivan; Celebić, Asja (December 2008). "Relations between anterior permanent teeth, dental arches and hard palate". Collegium Antropologicum . 32 (4): 1099–1104. ISSN   0350-6134. PMID   19149214.
  2. 1 2 3 Romero, Mario F. (July 2015). "Esthetic anterior composite resin restorations using a single shade: Step-by-step technique". The Journal of Prosthetic Dentistry. 114 (1): 9–12. doi:10.1016/j.prosdent.2015.02.013. PMID   25917855.
  3. 1 2 Korkut, Bora (2018). "Smile makeover with direct composite veneers: A two-year follow-up report". Journal of Dental Research, Dental Clinics, Dental Prospects. 12 (2): 146–151. doi:10.15171/joddd.2018.023. ISSN   2008-210X. PMC   6076883 . PMID   30087767.
  4. 1 2 3 4 5 Mackenzie, Louis (2013-05-01). "Direct Anterior Composites: A Practical Guide". Dental Update. 40 (4): 297–317. doi:10.12968/denu.2013.40.4.297. PMID   23829012.
  5. Keene, Harris J. (December 1963). "Distribution of diastemas in the dentition of man". American Journal of Physical Anthropology. 21 (4): 437–441. doi:10.1002/ajpa.1330210402. ISSN   0002-9483.
  6. Ceremello, Peter J. (February 1953). "The superior labial frenum and the midline diastema and their relation to growth and development of the oral structures". American Journal of Orthodontics. 39 (2): 120–139. doi:10.1016/0002-9416(53)90016-5. ISSN   0002-9416.
  7. Romero, Mario F.; Babb, Courtney S.; Brenes, Christian; Haddock, Fernando J. (April 2018). "A multidisciplinary approach to the management of a maxillary midline diastema: A clinical report". The Journal of Prosthetic Dentistry. 119 (4): 502–505. doi:10.1016/j.prosdent.2017.06.017. ISSN   0022-3913. PMID   28838822.
  8. 1 2 Lempel, Edina; Lovász, Bálint Viktor; Meszarics, Réka; Jeges, Sára; Tóth, Ákos; Szalma, József (April 2017). "Direct resin composite restorations for fractured maxillary teeth and diastema closure: A 7 years retrospective evaluation of survival and influencing factors" (PDF). Dental Materials. 33 (4): 467–476. doi:10.1016/j.dental.2017.02.001. ISSN   0109-5641. PMID   28256273. S2CID   3733958.
  9. 1 2 Frese, Cornelia; Schiller, Petra; Staehle, Hans Joerg; Wolff, Diana (November 2013). "Recontouring teeth and closing diastemas with direct composite buildups: A 5-year follow-up". Journal of Dentistry. 41 (11): 979–985. doi:10.1016/j.jdent.2013.08.009. ISSN   0300-5712. PMID   23954577.
  10. 1 2 Shahdad, S.A; Kennedy, J.G (November 1998). "Bond strength of repaired anterior composite resins: an it>/it> study". Journal of Dentistry. 26 (8): 685–694. doi:10.1016/s0300-5712(97)00044-4. ISSN   0300-5712. PMID   9793291.
  11. Van Meerbeek, B.; Perdigão, J.; Lambrechts, P.; Vanherle, G. (January 1998). "The clinical performance of adhesives". Journal of Dentistry. 26 (1): 1–20. doi:10.1016/s0300-5712(96)00070-x. ISSN   0300-5712. PMID   9479920.
  12. Millar, B J; Robinson, P B; Inglis, A T (January 1997). "Clinical evaluation of an anterior hybrid composite resin over 8 years". British Dental Journal. 182 (1): 26–30. doi:10.1038/sj.bdj.4809289. ISSN   0007-0610. PMID   9029809. S2CID   22001382.
  13. Elderton, R J (May 1985). "Six-monthly examinations for dental caries". British Dental Journal. 158 (10): 370–374. doi:10.1038/sj.bdj.4805616. ISSN   0007-0610. PMID   3893483. S2CID   259268.
  14. Närhi, T. O.; Tanner, J.; Ostela, I.; Narva, K.; Nohrström, T.; Tirri, T.; Vallittu, P. K. (2003-12-01). "Anterior Z250 resin composite restorations: one-year evaluation of clinical performance". Clinical Oral Investigations. 7 (4): 241–243. doi:10.1007/s00784-003-0231-6. ISSN   1432-6981. PMID   14505071. S2CID   23506444.
  15. Reusens, B.; D'hoore, W.; Vreven, J. (1999-07-19). "In vivo comparison of a microfilled and a hybrid minifilled composite resin in class III restorations: 2-year follow-up". Clinical Oral Investigations. 3 (2): 62–69. doi:10.1007/s007840050080. ISSN   1432-6981. PMID   10803113. S2CID   27871866.
  16. van Noort, R.; Davis, L.G. (August 1993). "A prospective study of the survival of chemically activated anterior resin composite restorations in general dental practice: 5-year results". Journal of Dentistry. 21 (4): 209–215. doi:10.1016/0300-5712(93)90128-d. ISSN   0300-5712. PMID   8354745.
  17. Rosenstiel, Stephen F; Land, Martin F; Rashid, Robert G (April 2004). "Dentists' molar restoration choices and longevity: a web-based survey". The Journal of Prosthetic Dentistry. 91 (4): 363–367. doi:10.1016/j.prosdent.2004.02.004. ISSN   0022-3913. PMID   15116038.
  18. "Direct anterior composite restoration  a predictable outcome: сase report". Эндодонтия Today. 17 (3). 2019-09-20. doi: 10.36377/1683-2981-2019-17-3-71-74 . S2CID   243684534.
  19. Denehy, Gerald E. (September 2005). "Simplifying the Class Iv Lingual Matrix". Journal of Esthetic and Restorative Dentistry. 17 (5): 312–319. doi:10.1111/j.1708-8240.2005.tb00137.x. ISSN   1496-4155. PMID   16225797.
  20. Li, Junying; Zhong, Lin; Zhang, Ling; Chen, Duanjing; Yu, Haiyang (March 2016). "A Morphometric Study of Labial Grooves on Anterior Maxillary Dentition". The International Journal of Periodontics & Restorative Dentistry. 36 (2): e41–e48. doi:10.11607/prd.2467. ISSN   0198-7569. PMID   26901309.
  21. 1 2 3 Korkut, Bora (2018-06-20). "Smile makeover with direct composite veneers: A two-year follow-up report". Journal of Dental Research, Dental Clinics, Dental Prospects. 12 (2): 146–151. doi:10.15171/joddd.2018.023. ISSN   2008-210X. PMC   6076883 . PMID   30087767.
  22. Arakawa, Kazuo (December 2010). "Shrinkage forces due to polymerization of light-cured dental composite resin in cavities". Polymer Testing. 29 (8): 1052–1056. doi:10.1016/j.polymertesting.2010.09.008. hdl: 2324/26047 . ISSN   0142-9418.
  23. Ramírez Barrantes, Juan Carlos; Araujo Jr, Edson; Narciso Baratieri, Luiz (2015-07-15). "Clinical Evaluation of Direct Composite Resin Restorations in Fractured Anterior Teeth". Odovtos - International Journal of Dental Sciences (16): 47–62. doi: 10.15517/ijds.v0i16.20326 . ISSN   2215-3411.
  24. Salanitri, S; Seow, WK (2013-05-05). "Developmental enamel defects in the primary dentition: aetiology and clinical management". Australian Dental Journal. 58 (2): 133–140. doi: 10.1111/adj.12039 . ISSN   0045-0421. PMID   23713631.
  25. Chow, Y. W.; Pietranico, R.; Mukerji, A. (1975-10-27). "Studies of oxygen binding energy to hemoglobin molecule". Biochemical and Biophysical Research Communications. 66 (4): 1424–1431. doi:10.1016/0006-291x(75)90518-5. ISSN   0006-291X. PMID   6.
  26. Muthu, Ms; Rathna, PrabhuV; Koora, Kiran (2007). "Spontaneous closure of midline diastema following frenectomy". Journal of Indian Society of Pedodontics and Preventive Dentistry. 25 (1): 23–6. doi: 10.4103/0970-4388.31985 . ISSN   0970-4388. PMID   17456963.
  27. Keene, Harris J. (December 1963). "Distribution of diastemas in the dentition of man". American Journal of Physical Anthropology. 21 (4): 437–441. doi:10.1002/ajpa.1330210402. ISSN   0002-9483.
  28. Gill, Daljit S.; Naini, Farhad B. (2013-08-23), "Principles of Orthodontic Treatment Planning", Orthodontics: Principles and Practice, John Wiley & Sons, Ltd,., pp. 106–116, doi:10.1002/9781118785041.ch12, ISBN   978-1-118-78504-1
  29. Tanaka, Orlando Motohiro; Morino, Alessandro Yuske Kusano; Machuca, Oscar Fernando; Schneider, Neblyssa Ágatha (2015). "When the Midline Diastema Is Not Characteristic of the "Ugly Duckling" Stage". Case Reports in Dentistry. 2015: 924743. doi: 10.1155/2015/924743 . ISSN   2090-6447. PMC   4540983 . PMID   26345220.
  30. Chalifoux, Paul R. (July 1996). "Practice Made Perfect.: PERCEPTION ESTHETICS: FACTORS THAT AFFECT SMILE DESIGN". Journal of Esthetic and Restorative Dentistry. 8 (4): 189–192. doi:10.1111/j.1708-8240.1996.tb00424.x. ISSN   1496-4155.
  31. Prabhu, R; Bhaskaran, S; Geetha Prabhu, Kr; Eswaran, Ma; Phanikrishna, G; Deepthi, B (2015). "Clinical evaluation of direct composite restoration done for midline diastema closure - long-term study". Journal of Pharmacy and Bioallied Sciences. 7 (6): S559-62. doi: 10.4103/0975-7406.163539 . ISSN   0975-7406. PMC   4606659 . PMID   26538917.
  32. BMEDSc, Jonathan Penchas; Chiche, Gerald (1993). "Esthetic Dentistry. A Clinical Approach to Techniques and Materials". Implant Dentistry. 2 (3): 207. doi:10.1097/00008505-199309000-00028. ISSN   1056-6163.
  33. Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We (2002). "Effect of surface conditions on the color of dental resin composites". Journal of Biomedical Materials Research. 63 (5): 657–663. doi:10.1002/jbm.10383. ISSN   0021-9304. PMID   12209913.
  34. Hickel, R.; Heidemann, D.; Staehle, H. J.; Minnig, P.; Wilson, N. H.; German Scientific Association for Operative Dentistry; European Federation of Conservative Dentistry (2004-05-18). "Direct composite restorations: Extendes use in anterior and posterior situations". Clinical Oral Investigations. 8 (2): 43–4. doi:10.1007/s00784-004-0269-0. ISSN   1432-6981. PMID   15221477. S2CID   2766580.
  35. Khashayar, G.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A.J.; Roeters, J. (May 2014). "The influence of varying layer thicknesses on the color predictability of two different composite layering concepts". Dental Materials. 30 (5): 493–498. doi:10.1016/j.dental.2014.02.002. PMID   24602519.
  36. Korkut, Bora; Yanikoglu, Funda; Tagtekin, Dilek (2016). "Direct Midline Diastema Closure with Composite Layering Technique: A One-Year Follow-Up". Case Reports in Dentistry. 2016: 6810984. doi: 10.1155/2016/6810984 . ISSN   2090-6447. PMC   4736806 . PMID   26881147.