Agglomerated food powder is a unit operation during which native particles are assembled to form bigger agglomerates, in which the original particle can still be distinguished. [1] Agglomeration can be achieved through processes that use liquid as a binder (wet methods) or methods that do not involve any binder (dry methods).
The liquid used in wet methods can be added directly to the product or via a humid environment. Using a fluidized bed dryer and multiple step spray drying are two examples of wet methods while roller compacting and extrusion are two examples of dry methods.
Advantages of agglomeration for food include:
Disadvantages of food agglomeration:
Particle size distribution is an important parameter to monitor in agglomerated food products. In both wet and dry agglomeration, particles of undesired sizes must be removed to ensure the best possible finished product performance. High-powered cyclones are the most common way to separate undesired fine particles (or "fines") from larger agglomerates (or "overs"). Cyclones utilize the combination of wind power and the different densities of the two products to pull the fines out of the mix. The fines can then be reworked through the agglomeration process to reduce yield loss. In contrast, shaker screens are often used to separate out the overs from the rest of the product. The overs can be reworked into the process by first being broken into smaller particles.
Wet agglomeration is a process that introduces a liquid binder to develop adhesion forces between the dry particles to be agglomerated. Mixing disperses the liquid over the particles evenly and promotes growth of the aggregate to the desired size. A final drying step is required to stabilize the agglomerates. [1]
In all wet agglomeration methods, the first step is wetting the particles. This initiates adhesion forces between the particles. The next step, nucleation, is the process by which the native particles come together and are held with liquid bridges and capillary forces. Then, through coalescence or the growth phase, these small groups of particles come together to create larger particles until the particles are the desired size. Consolidation occurs as the agglomerates increase in density and strength through drying and collisions with other particles. Mixing as the powder dries also causes some particles to break and erode, creating smaller particles and fines. To achieve the correct particle size, erosion and growth must be balanced. The last step in wet agglomeration is the final stabilization through drying. The agglomerated particles are dried to less than 5% water content, and cooled to below their glass transition temperature. [1]
Wet agglomeration falls into two categories based on method of agitation: Mechanical mixing and pneumatic mixing.
Dry agglomeration is agglomeration performed without water or binding liquids, instead using compression only.
Roller compaction is a process in which powders are forced between two rolls, which compress the powders into dense sticks or sheets. These sticks or sheets are then ground into granules. [3] Material properties will affect the mechanical properties of the resulting granules. Food particles with crystalline structures will deform plastically under pressure, and amorphous materials will deform viscoelastically. [1] Roller compaction is more commonly used on individual ingredients of a finished powdered food product, than on a blend of ingredients producing a granulated finished product.
Some advantages of roller compaction are
Disadvantages:
Examples of agglomerated food powders: Sucrose, sodium chloride, monosodium glutamate and fibers. [1]
Extrusion is executed by mixing the powder with liquid, additives, or dispersants and then compressing the mixture and forcing it through a die. The product is then dried and broken down to the desired particle size. [6] Extruded powders are dense. [1] Extrusion is typically used for ingredients such as minerals and highly-hygroscopic products which benefit from reduced surface area, as well as products that are subject to oxidation. [6] Extrusion for agglomeration should not be confused with the more common food extrusion process that involves creating a dough that is cooked and expands as it passes through the die.
A tablet is a pharmaceutical oral dosage form or solid unit dosage form. Tablets may be defined as the solid unit dosage form of medication with suitable excipients. It comprises a mixture of active substances and excipients, usually in powder form, that are pressed or compacted into a solid dose. The main advantages of tablets are that they ensure a consistent dose of medicine that is easy to consume.
Spray drying is a method of forming a dry powder from a liquid or slurry by rapidly drying with a hot gas. This is the preferred method of drying of many thermally-sensitive materials such as foods and pharmaceuticals, or materials which may require extremely consistent, fine particle size. Air is the heated drying medium; however, if the liquid is a flammable solvent such as ethanol or the product is oxygen-sensitive then nitrogen is used.
Instant coffee is a beverage derived from brewed coffee beans that enables people to quickly prepare hot coffee by adding hot water or milk to coffee solids in powdered or crystallized form and stirring. The product was first invented in Invercargill, the largest city in Southland, New Zealand, in 1890. Instant coffee solids refers to the dehydrated and packaged solids available at retail used to make instant coffee. Instant coffee solids are commercially prepared by either freeze-drying or spray drying, after which it can be rehydrated. Instant coffee in a concentrated liquid form, as a beverage, is also manufactured.
Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.
In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps (deagglomeration).
Mineral processing is the process of separating commercially valuable minerals from their ores in the field of extractive metallurgy. Depending on the processes used in each instance, it is often referred to as ore dressing or ore milling.
In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol–gel process is used to produce ceramic nanoparticles.
A fluidized bed is a physical phenomenon that occurs when a solid particulate substance is under the right conditions so that it behaves like a fluid. The usual way to achieve a fluidized bed is to pump pressurized fluid into the particles. The resulting medium then has many properties and characteristics of normal fluids, such as the ability to free-flow under gravity, or to be pumped using fluid technologies.
Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint, which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a thick, tough finish that is more durable than conventional paint. Powder coating is mainly used for coating of metal objects, particularly those subject to rough use. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated, as little heat or oven dwell time is required to process them.
A high-shear mixer disperses, or transports, one phase or ingredient into a main continuous phase (liquid), with which it would normally be immiscible. A rotor or impeller, together with a stationary component known as a stator, or an array of rotors and stators, is used either in a tank containing the solution to be mixed, or in a pipe through which the solution passes, to create shear. A high-shear mixer can be used to create emulsions, suspensions, lyosols, and granular products. It is used in the adhesives, chemical, cosmetic, food, pharmaceutical, and plastics industries for emulsification, homogenization, particle size reduction, and dispersion.
Particle technology is the "science and technology related to the handling and processing of particles and powders." This applies to the production, handling, modification, and use of a wide variety of particulate materials, both wet or dry, in sizes ranging from nanometers to centimeters; its scope spans a range of industries to include chemical, petrochemical, agricultural, food, pharmaceuticals, mineral processing, civil engineering, advanced materials, energy, and the environment.
The Glatt group is active internationally as an equipment manufacturer, system supplier and engineering service provider in the field of processing and refinement of solid compounds for the food / feed, pharmaceutical and fine chemical industry.
Nano spray dryers refer to using spray drying to create particles in the nanometer range. Spray drying is a gentle method for producing powders with a defined particle size out of solutions, dispersions, and emulsions which is widely used for pharmaceuticals, food, biotechnology, and other industrial materials synthesis.
Pharmaceutical manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs as part of the pharmaceutical industry. The process of drug manufacturing can be broken down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others.
Granulation is the process of forming grains or granules from a powdery or solid substance, producing a granular material. It is applied in several technological processes in the chemical and pharmaceutical industries. Typically, granulation involves agglomeration of fine particles into larger granules, typically of size range between 0.2 and 4.0 mm depending on their subsequent use. Less commonly, it involves shredding or grinding solid material into finer granules or pellets.
Coating is a process that consists of applying a liquid or a powder into the surface of an edible product to convey new properties. Coating designates an operation as much as the result of it: the application of a layer and the layer itself. Coating takes different meanings depending on the industry concerned.
Tableting is a method of pressing medicine or candy into tablets. Confectionery manufacture shares many similarities with pharmaceutical production.
Vibratory Fluidized Bed (VFB) is a type of fluidized bed where the mechanical vibration enhances the performance of fluidization process. Since the first discovery of vibratory fluidized bed, its vibration properties proves to be more efficient in dealing with fine particles which appears to be very difficult to achieve with normal fluidized bed. Even though numerous publications and its popularity in industrial applications, the knowledge about vibratory dynamics and properties are very limited. Future research and development are needed to further improve this technology to bring it to another level.
Gyratory equipment, used in mechanical screening and sieving is based on a circular motion of the machine. Unlike other methods, gyratory screen operates in a gentler manner and is more suited to handle fragile things, enabling it to produce finer products. This method is applicable for both wet and dry screening.
A powder is a dry, bulk solid composed of many very fine particles that may flow freely when shaken or tilted. Powders are a special sub-class of granular materials, although the terms powder and granular are sometimes used to distinguish separate classes of material. In particular, powders refer to those granular materials that have the finer grain sizes, and that therefore have a greater tendency to form clumps when flowing. Granulars refer to the coarser granular materials that do not tend to form clumps except when wet.