Alan M. Jones

Last updated

Alan M. Jones (born May 13, 1957) is an American cell biologist. He is Kenan Distinguished Professor of Biology [1] at the University of North Carolina at Chapel Hill and has a joint appointment with the Department of Pharmacology in the UNC School of Medicine. He is a past President of the American Society of Plant Biologists (ASPB, 2013-2014). [2] He is a Fellow of The American Association for the Advancement of Science, Fellow of American Society of Plant Biologists, and an Alexander von Humboldt Fellow.

Contents

Education

Jones received his B.S summa cum laude in Botany from the University of Florida in 1978 and his PhD in Plant Biology from the University of Illinois at Urbana-Champaign in 1983. He was first under the mentorship of Larry N. Vanderhoef and finished his training with Tuan-hua David Ho. In the middle of his PhD program, Jones spent 2 years at the Friedrich Miescher Institute in Basal Switzerland under the mentorship of Fred Meins. His postdoctoral training was at the University of Wisconsin- Madison under the mentorship of Peter Quail. Jones joined the faculty at the University of North Carolina at Chapel Hill in 1986.

Research

Phytochrome

During his postdoctoral training, Jones established that the plant photoreceptor, phytochrome A, is dimeric and he showed a minimal structural unit for photoperception. This worked continued into his early years at the University of North Carolina and directed subsequent structure analyses of phytochrome by other labs.

Plant Hormone Receptors

During the 1970s, in collaboration with the organic chemist Nelson Leonard, Jones invented a photoaffinity labeling technique [3] to identify auxin receptors in plant extracts. He provided the first data proving that Auxin-binding Protein 1 (ABP1) binds auxin [4] and, in collaboration with Michael Sussman, proved that this receptor is essential for normal auxin-mediated growth [5] [6] The later discovery was only the second report of a gene knockout mutant in the genetic model, Arabidopsis thaliana. [7] Despite his proof that auxin binding to ABP1 is the rate-limiting step for auxin signal transduction, the classification of ABP1 as a hormone receptor remains controversial among plant cell biologists because the structure and properties of ABP1 do not fit any animal hormone receptor paradigm.

Programmed Cell Death

In the 1990s, Jones studied programmed cell death associated with plant cell differentiation. He elucidated the role of the vacuole in hydrolytic-based plant cell death. [8]

G Protein-coupled Signaling

In 2000, Jones switched his research effort to the study of the heterotrimeric G protein signaling pathway in Arabidopsis. His rationalization was that Arabidopsis, having a simpler repertoire of G signaling elements than mouse and much easier to genetically engineer, would serve as a good multicellular model for G signaling research. Jones showed that G protein signaling in plants and many other taxa on the tree of life differed from the well-established animal paradigm. [9]

Related Research Articles

<span class="mw-page-title-main">G protein</span> Type of proteins

G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their activity is regulated by factors that control their ability to bind to and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). When they are bound to GTP, they are 'on', and, when they are bound to GDP, they are 'off'. G proteins belong to the larger group of enzymes called GTPases.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

<span class="mw-page-title-main">Gravitropism</span> Plant growth in reaction to gravity and bending of leaves and roots

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Primordium</span> Organ in the earliest recognizable stage of embryonic development

A primordium in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable of triggering growth of the would-be organ and the initial foundation from which an organ is able to grow. In flowering plants, a floral primordium gives rise to a flower.

<span class="mw-page-title-main">G protein-coupled receptor kinase</span> Family of protein kinases

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">G alpha subunit</span>

G alpha subunits are one of the three types of subunit of guanine nucleotide binding proteins, which are membrane-associated, heterotrimeric G proteins.

Trans-acting siRNA are a class of small interfering RNA (siRNA) that repress gene expression through post-transcriptional gene silencing in land plants. Precursor transcripts from TAS loci are polyadenylated and converted to double-stranded RNA, and are then processed into 21-nucleotide-long RNA duplexes with overhangs. These segments are incorporated into an RNA-induced silencing complex (RISC) and direct the sequence-specific cleavage of target mRNA. Ta-siRNAs are classified as siRNA because they arise from double-stranded RNA (dsRNA).

Peptide signaling plays a significant role in various aspects of plant growth and development and specific receptors for various peptides have been identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. Signaling peptides include members of the following protein families.

<span class="mw-page-title-main">GNAT3</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(t) subunit alpha-3, also known as gustducin alpha-3 chain, is a protein subunit that in humans is encoded by the GNAT3 gene.

<span class="mw-page-title-main">Phototropism</span> Growth of a plant in response to a light stimulus

In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms, or movements, which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness. Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.

<span class="mw-page-title-main">Auxin binding protein</span>

In molecular biology, the auxin binding protein family is a family of proteins which bind the plant hormone auxin. They are located in the lumen of the endoplasmic reticulum (ER). The primary structure of these proteins contains an N-terminal hydrophobic leader sequence of 30-40 amino acids, which could represent a signal for translocation of the protein to the ER. The mature protein comprises around 165 residues, and contains a number of potential N-glycosylation sites. In vitro transport studies have demonstrated co-translational glycosylation. Retention within the lumen of the ER correlates with an additional signal located at the C terminus, represented by the sequence Lys-Asp-Glu-Leu, known to be responsible for preventing secretion of proteins from the lumen of the ER in eukaryotic cells.

WRKY transcription factors are proteins that bind DNA. They are transcription factors that regulate many processes in plants and algae (Viridiplantae), such as the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination and some developmental processes but also contribute to secondary metabolism.

Feronia, also known as FER or protein Sirene, is a recognition receptor kinase found in plants. FER plays a significant part in the plant immune system as a receptor kinase which assists in immune signaling within plants, plant growth, and plant reproduction. FER is regulated by the Rapid Alkalinization Factor (RALF). FER regulates growth in normal environments but it is most beneficial in stressful environments as it helps to initiate immune signaling. FER can also play a role in reproduction in plants by participating in the communication between the female and male cells. FER is found in and can be studied in the organism Arabidopsis thaliana.

<span class="mw-page-title-main">Strigolactone</span> Group of chemical compounds

Strigolactones are a group of chemical compounds produced by roots of plants. Due to their mechanism of action, these molecules have been classified as plant hormones or phytohormones. So far, strigolactones have been identified to be responsible for three different physiological processes: First, they promote the germination of parasitic organisms that grow in the host plant's roots, such as Strigalutea and other plants of the genus Striga. Second, strigolactones are fundamental for the recognition of the plant by symbiotic fungi, especially arbuscular mycorrhizal fungi, because they establish a mutualistic association with these plants, and provide phosphate and other soil nutrients. Third, strigolactones have been identified as branching inhibition hormones in plants; when present, these compounds prevent excess bud growing in stem terminals, stopping the branching mechanism in plants.

Niko Geldner is a German-Swiss biologist specialised in the study of Plant Cell and Developmental Biology. He is a full professor and the director of the plant cell biology laboratory at the University of Lausanne.

<span class="mw-page-title-main">Ethylene signaling pathway</span> Signaling pathway

Ethylene signaling pathway is a signal transduction in plant cells to regulate important growth and developmental processes. Acting as a plant hormone, the gas ethylene is responsible for promoting the germination of seeds, ripening of fruits, the opening of flowers, the abscission of leaves and stress responses. It is the simplest alkene gas and the first gaseous molecule discovered to function as a hormone.

Stacey Harmer is a chronobiologist whose work centers on the study of circadian rhythms in plants. Her research focuses on the molecular workings of the plant circadian clock and its influences on plant behaviors and physiology. She is a professor in the Department of Plant Biology at the University of California, Davis.

References

  1. "New distinguished professors honored at fall reception". Archived from the original on 28 March 2018. Retrieved 31 August 2024.
  2. "Past Presidents". American Society of Plant Biologists. Retrieved 30 May 2023.
  3. Jones, A.M., L.L. Melhado, T.-H.D. Ho, C.J. Pearce, and N.J. Leonard (1984) Azido Auxins: Photoaffinity labeling of auxin-binding proteins in maize coleoptile with tritiated 5-azidoindole-3- acetic acid. Plant Physiol 75:1111-1116
  4. Jones, A.M., M.A. Venis (1989) Photoaffinity labeling of auxin-binding proteins in maize. Proc. Natl. Acad. Sci. USA 86:6153-6156
  5. Ullah, H. Chen, J. G., Young, J., Im, K-H., Sussman, MR., Jones, AM (2001) Modulation of cell proliferation by heterotrimeric G-protein in Arabidopsis. Science 292: 2066-2069
  6. Jones, A. M. , Im, K-H., Savka, M., Wu, M-J., DeWitt, N.G., Shillito, R. Binns, A. (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114-1117.
  7. Chen, J, Ullah, H., Young, J.C., Sussman, M.R., Jones, A.M (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes and Development 15:902-911.
  8. Jones, A M (2001) Programmed cell death in development and defense. Plant Physiol. 125: 94-97
  9. Urano, D Chen, J-G Botella, JR and Jones AM (2013) Heterotrimeric G protein signaling in the plant kingdom. Open Biology Mar 27;3(3):120186. doi: 10.1098/rsob.120186