Aldosterone-to-renin ratio

Last updated

Aldosterone-to-renin ratio (ARR) is the mass concentration of aldosterone divided by the plasma renin activity or by serum renin concentration in blood. The aldosterone/renin ratio is recommended as screening tool for primary hyperaldosteronism. [1]

Contents

Tests

There is more than one way to measure the ratio. Before sampling, the patient must have a high level of blood sodium.[ citation needed ]

Interpretation

Aldosterone-to-renin ratio can be given in ng/dL per ng/(mL·h), that is, nanogram per deciliter of aldosterone per nanogram per (milliliter x hour) of renin. Also, it can be given in pmol/L per µg/(L·h), where aldosterone is given in molar concentration. The former can be converted to the latter by multiplying by 27.6. Also, the inverse value is occasionally given, that is, the renin-to-aldosterone ratio, whose value is the multiplicative inverse of the aldosterone-to-renin ratio.[ citation needed ]

The cutoff normal individuals from those with primary hyperaldosteronism is significantly affected by the conditions of testing, such as posture and time of day. On average, an ARR cutoff of 23.6 ng/dL per ng/(mL·h), expressed in alternative units as 651 pmol/L per µg/(L·h), has been estimated to have a sensitivity of 97% and specificity of 94%. [2] An ARR value in an individual that is higher than the cutoff indicates primary hyperaldosteronism.

If the inverse ratio (i.e. renin-to-aldosterone) ratio is used, a value lower than the cutoff indicates primary hyperaldosteronism.

Cutoffs used to distinguish primary hyperaldosteronism from normal individuals
Aldosterone-to-renin ratioRenin-to-aldosterone ratio
ValueUnitValueUnit
13.1, [1] 23.6, [2] 35.0 [1] ng/dL per ng/(mL·h)0.029, 0.042, 0.076ng/(mL·h) per ng/dL
362, 651, 966pmol/L per µg/(L·h)0.0010, 0.0015, 0.0028µg/(L·h) per pmol/L

See also

Related Research Articles

Ascites Abnormal build-up of fluid in the abdomen

Ascites is the abnormal build-up of fluid in the abdomen. Technically, it is more than 25 ml of fluid in the peritoneal cavity, although volumes greater than one liter may occur. Symptoms may include increased abdominal size, increased weight, abdominal discomfort, and shortness of breath. Complications can include spontaneous bacterial peritonitis.

Reference ranges for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry, the area of pathology that is generally concerned with analysis of bodily fluids.

Renin Aspartic protease protein and enzyme

Renin, also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin–angiotensin–aldosterone system (RAAS)—also known as the renin–angiotensin–aldosterone axis—that mediates the volume of extracellular fluid and arterial vasoconstriction. Thus, it regulates the body's mean arterial blood pressure.

Aldosterone Mineralocorticoid steroid hormone

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

Primary aldosteronism Medical condition

Primary aldosteronism (PA), also known as primary hyperaldosteronism or Conn's syndrome, refers to the excess production of the hormone aldosterone from the adrenal glands, resulting in low renin levels and high blood pressure. This abnormality is caused by hyperplasia or tumors. Many suffer from fatigue, potassium deficiency and high blood pressure which may cause poor vision, confusion or headaches. Symptoms may also include: muscular aches and weakness, muscle spasms, low back and flank pain from the kidneys, trembling, tingling sensations, dizziness/vertigo, nocturia and excessive urination. Complications include cardiovascular disease such as stroke, myocardial infarction, kidney failure and abnormal heart rhythms.

Renal physiology Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

Essential hypertension is the form of hypertension that by definition has no identifiable secondary cause. It is the most common type affecting 85% of those with high blood pressure. The remaining 15% is accounted for by various causes of secondary hypertension. Primary hypertension tends to be familial and is likely to be the consequence of an interaction between environmental and genetic factors. Prevalence of essential hypertension increases with age, and individuals with relatively high blood pressure at younger ages are at increased risk for the subsequent development of hypertension. Hypertension can increase the risk of cerebral, cardiac, and renal events.

Gitelman syndrome Medical condition

Gitelman syndrome (GS) is an autosomal recessive kidney tubule disorder characterized by low blood levels of potassium and magnesium, decreased excretion of calcium in the urine, and elevated blood pH. The disorder is caused by genetic mutations resulting in improper function of the thiazide-sensitive sodium-chloride symporter located in the distal convoluted tubule of the kidney. The distal convoluted tubule of the kidney plays an important homoestatic role in sodium and chloride absorption as well as of the reabsorption of magnesium and calcium.

Hypoaldosteronism Medical condition

Hypoaldosteronism is an endocrinological disorder characterized by decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.

Zona glomerulosa Part of the adrenal gland

The zona glomerulosa of the adrenal gland is the most superficial layer of the adrenal cortex, lying directly beneath the renal capsule. Its cells are ovoid and arranged in clusters or arches.

Metabolic alkalosis Medical condition

Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations. The condition typically cannot last long if the kidneys are functioning properly.

Hyperaldosteronism Hormonal disorder

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).

Apparent mineralocorticoid excess syndrome Medical condition

Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension, hypernatremia and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.

Liddles syndrome Medical condition

Liddle's syndrome, also called Liddle syndrome, is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretics. It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.

Pseudohyperaldosteronism is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure (hypertension), low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. Causes include genetic disorders, acquired conditions, metabolic disorders, and dietary imbalances including excessive consumption of licorice. Confirmatory diagnosis depends on the specific root cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers.

The ACTH test is a medical test usually requested and interpreted by endocrinologists to assess the functioning of the adrenal glands' stress response by measuring the adrenal response to adrenocorticotropic hormone or another corticotropic agent such as tetracosactide or alsactide (Synchrodyn). ACTH is a hormone produced in the anterior pituitary gland that stimulates the adrenal glands to release cortisol, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), and aldosterone.

Plasma renin activity (PRA), also known as the renin (active) assay or random plasma renin, is a measure of the activity of the plasma enzyme renin, which plays a major role in the body's regulation of blood pressure, thirst, and urine output. Measure of direct renin concentration (DRC) is technically more demanding, and hence PRA is used instead. DRC assays are still in evolution, and generally a conversion factor of PRA (ng/mL/h) to DRC (mU/L) is 8.2. A Recently developed and already commonly used automated DRC assay uses the conversion factor is 12. PRA is sometimes measured, specially in case of certain diseases which present with hypertension or hypotension. PRA is also raised in certain tumors. A PRA measurement may be compared to a plasma aldosterone concentration as an aldosterone-to-renin ratio (ARR).

Glucocorticoid remediable aldosteronism also describable as aldosterone synthase hyperactivity, is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.

Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland, or due to something outside of the adrenal gland causing it to secrete excessive aldosterone.

SUSPUP (serum sodium to urinary sodium to serum potassium to urinary potassium) and SUSPPUP (serum sodium to urinary sodium to (serum potassium)2 to urinary potassium) are calculated structure parameters of the renin–angiotensin-aldosterone system (RAAS). They have been developed to support screening for primary or secondary aldosteronism.

References

  1. 1 2 3 Tiu, S. -C.; Choi, C. -H.; Shek, C. -C.; Ng, Y. -W.; Chan, F. K. W.; Ng, C. -M.; Kong, A. P. S. (2004). "The Use of Aldosterone-Renin Ratio as a Diagnostic Test for Primary Hyperaldosteronism and Its Test Characteristics under Different Conditions of Blood Sampling". Journal of Clinical Endocrinology & Metabolism. 90 (1): 72–78. doi: 10.1210/jc.2004-1149 . PMID   15483077.
  2. 1 2 Aldosterone-Renin Ratio in Primary Hyperaldosteronism by Allan S. Brett. Posted: 03/15/2005; Journal Watch. 2005;4(2)