This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Alison Mary Bruce | |
---|---|
Alma mater | University of Manchester Niels Bohr Institute |
Scientific career | |
Institutions | University of Brighton |
Thesis | Studies of the Interacting Boson-Fermion Model in the W-Os-Pt nuclei (1985) |
Alison Bruce is a British physicist who is a professor of nuclear physics at the University of Brighton. Her research considers the shape of atomic nuclei. She developed arrays of scintillation gamma-ray detectors for the determination of electromagnetic transition rates. She was awarded the 2024 Ernest Rutherford Medal and Prize from the Institute of Physics.
Bruce completed her doctoral research at the University of Manchester. She studied W-Os-Pt nuclei and developed Interacting Boson-Fermion Models. [1] She worked at the Niels Bohr Institute, where she used electric dipoles to understand the shapes of deformed nuclei. She used boson model symmetries to predict the spectra of odd-odd N=Z nuclei. [2]
Bruce was made a professor at the University of Brighton in 2005.[ citation needed ] She was the first woman to hold such a position,[ citation needed ] and developed Brighton's programme on nuclear physics. She created experimental strategies to measure transition rates in rare-earth nuclei. Bruce develops scintillation gamma-ray detectors for measuring electromagnetic transition rates with high precision. These detectors can be assembled in arrays and engineered to have sub-nanosecond timing capabilities.
Bruce has led UK efforts in international programmes, including Riken's Radioactive Beam Factory, Germany's Facility for Antiproton and Ion Research and the Decay SPECtroscopy. At Riken she performed the first fast-time measurements of the most neutron-rich zirconium isotopes (104,106Zr), and found that they had deformed quadrupole shapes. [3]
Bruce was awarded the 2024 Ernest Rutherford Medal and Prize from the Institute of Physics. [4]
The neutron is a subatomic particle, symbol
n
or
n0
, that has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.
The interacting boson model (IBM) is a model in nuclear physics in which nucleons (protons or neutrons) pair up, essentially acting as a single particle with boson properties, with integral spin of either 2 (d-boson) or 0 (s-boson). They correspond to a quintuplet and singlet, i.e. 6 states.
A timeline of atomic and subatomic physics, including particle physics.
In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. Most force-carrying particles like photons or gluons are called bosons and, although they have quanta of energy, do not have rest mass or discrete diameters and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions. The W and Z bosons, however, are an exception to this rule and have relatively large rest masses at approximately 80 GeV and 90 GeV respectively.
DELPHI was one of the four main detectors of the Large Electron–Positron Collider (LEP) at CERN, one of the largest particle accelerators ever made. Like the other three detectors, it recorded and analyzed the result of the collision between LEP's colliding particle beams. The specific focus of DELPHI was on particle identification, three-dimensional information, high granularity (detail), and precise vertex determination.
Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.
Noemie Benczer Koller is a nuclear physicist. She was the first tenured female professor of Rutgers College.
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value. Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin. Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name boson to commemorate the contribution of Satyendra Nath Bose, an Indian physicist.
The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated from 2006 to 2011 at the Boulby Underground Laboratory in Loftus, North Yorkshire. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.
Scissors Modes are collective excitations in which two particle systems move with respect to each other conserving their shape. For the first time they were predicted to occur in deformed atomic nuclei by N. LoIudice and F. Palumbo, who used a semiclassical Two Rotor Model, whose solution required a realization of the O(4) algebra that was not known in mathematics. In this model protons and neutrons were assumed to form two interacting rotors to be identified with the blades of scissors. Their relative motion (Fig.1) generates a magnetic dipole moment whose coupling with the electromagnetic field provides the signature of the mode.
Kim Sun-kee is a South Korean physicist. He is professor in Seoul National University and director of the Korea Invisible Mass Search. He was the first director of the Rare Isotope Science Project within the Institute for Basic Science and is a member of the Korean Academy of Science and Technology.
The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.
Robin Marshall is an Emeritus professor of Physics & Biology in the School of Physics and Astronomy at the University of Manchester.
]
Peter John Twin is a British experimental nuclear physicist. He is known for his research into the structure of atomic nuclei, based upon his pioneering work on techniques of gamma ray spectroscopy and, specifically, the Total Energy Suppression Shield Array (TESSA).
Shalom Shlomo is a nuclear physicist, academic, and author. He is a Senior Scientist and Group Leader at the Cyclotron Institute of the Texas A&M University (TAMU).