All-silica fiber

Last updated

All-silica fiber, or silica-silica fiber, is an optical fiber whose core and cladding are made of silica glass. The refractive index of the core glass is higher than that of the cladding. These fibers are typically step-index fibers. The cladding of an all-silica fiber should not be confused with the polymer overcoat of the fiber.

Contents

All-silica fiber is usually used as the medium for the purpose of transmitting optical signals. It is of technical interest in the fields of communications, broadcasting and television, due to its physical properties of low transmission loss, large bandwidth and light weight. [1]

Applications

The practical application of optical fibers in various optical networks determines the requirements for the technical performance of optical fibers. For short-distance fiber-optic transmission networks, the multi-mode optical fiber is suitable for laser transmission and wider bandwidths, so as to support larger capacity of serial signal information transmission. [2] For long-distance submarine optical cable transmission systems, in order to reduce the number of expensive optical fiber amplifiers, it is important to consider using optical fibers with large mode field diameter area and negative dispersion to increase the transmission distance. [3] [4] The focus of the land-based long-distance transmission system is to be able to transmit more wavelengths, each of which should be transmitted at a high rate as much as possible. Even if the dispersion value of the optical fiber with the changes of the wavelength is minimum, the dispersion of fiber still needs to be solved. For local area networks, since the transmission distance is relatively short, the focus of consideration is on the cost of the optical network rather than the cost of transmission. In other words, it is necessary to solve the add/drop multiplexing problem of the upper/lower path in the optical fiber transmission system, and at the same time, the cost of the add/drop wavelength must be minimized. [5]

Dispersion Compensating Fiber (DCF)

Fiber dispersion is a problem that must be avoided in communication networks, and it is also a problem that needs to be solved in long-distance transmission systems. [6] In general, fiber dispersion includes two parts: material dispersion and waveguide structure dispersion. Material dispersion depends on the dispersion of the silica master batch and dopants used to make the fiber. Waveguide dispersion is usually the tendency effective refractive index of a mode that tends to vary with wavelength. [7] Dispersion compensation fiber is a technology used to solve dispersion management in transmission systems.

Non-Dispersion Shifted Fiber (USF)

Non-dispersion-shifted fiber (USF) is dominated by positive material dispersion. After combining with small waveguide dispersion, it produces zero dispersion near 1310 nm. [8] The dispersion-shifted fiber (DSF) and non-zero dispersion-shifted fiber (NZDSF) use technical means to deliberately design the refractive index profile of the fiber to produce waveguide dispersion compared with the material dispersion, so that the zero-dispersion wavelength of DSF moved to around 1550 nm after the material dispersion and the waveguide dispersion are added. [9] The 1550 nm wavelength is the most widely used wavelength in the current communication network. In the submarine optical cable transmission system, two kinds of optical fibers with positive and negative dispersion are combined to form a transmission system for dispersion management. With the increase in the distance and capacity of the transmission system, a large number of wavelength division multiplexing (WDM) and dense wavelength division multiplexing (DWDM) systems have been put into use. In these systems, in order to perform dispersion compensation, a double-clad and triple-clad DCF with refractive index distribution that can work in the C-band and L-band has been developed. [10]

Amplification Fiber

Amplification fibers, such as erbium-doped fiber (EDF), thulium-doped fiber (TOF), etc, can be made by doping rare earth elements, in the core layer of silica fiber. Amplifying fiber is highly integrable with traditional quartz fiber and also have many advantages such as high output, wide bandwidth, low noise and so on. Fiber amplifiers (such as EDFA) made of amplified fibers are the most widely used key components in today's transmission systems. [11]

Polarization Maintaining Fiber

Polarization-maintaining fiber is initially developed for coherent optical transmission and later has been used in the technical fields of fiber optic sensors such as fiber optic gyroscopes. [12] In recent years, due to the increase in the number of wavelength division multiplexing in the DWDM transmission system and the development of high speed, the polarization maintaining fiber has been more widely used. Currently, the most widely used fiber is Panda Optical Fiber (PANDA). PANDA fiber is currently used as pigtails connected with other fiber optic devices and used in the system as a whole.

Single-mode non-stripping optical fiber(SM-NSF) is a new type of optical fiber that still has the NSP polyester layer remaining on the surface of the fiber cladding even after removing the fiber cladding to protect the mechanical properties and high reliability of the optical fiber. SM-NSP fiber and conventional SM fiber have the same outer diameter, eccentricity, and degree of accuracy. It can be widely used in the optical fiber of the transmission system and is an ideal new-type distribution optical fiber.

Optical Fiber for Deep Ultraviolet (DUV) Light Transmission

One of the current research topics of solid-state lasers and gas lasers is laser oscillation technology in the deep ultraviolet field (250 nm). Deep ultraviolet light has been extremely widely used in the surface treatment of semiconductor substrates, DNA analysis and testing in the biochemistry field, and the treatment of myopia in the medical field.

See also

Related Research Articles

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiberoptic cables which carry much of the world's telecommunication links.

<span class="mw-page-title-main">Single-mode optical fiber</span> Optical fiber designed to carry only a single mode of light, the transverse mode

In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with different frequencies, but of the same mode, which means that they are distributed in space in the same way, and that gives us a single ray of light. Although the ray travels parallel to the length of the fiber, it is often called transverse mode since its electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. The 2009 Nobel Prize in Physics was awarded to Charles K. Kao for his theoretical work on the single-mode optical fiber. The standards G.652 and G.657 define the most widely used forms of single-mode optical fiber.

In a single-mode optical fiber, the zero-dispersion wavelength is the wavelength or wavelengths at which material dispersion and waveguide dispersion cancel one another. In all silica-based optical fibers, minimum material dispersion occurs naturally at a wavelength of approximately 1300 nm. Single-mode fibers may be made of silica-based glasses containing dopants that shift the material-dispersion wavelength, and thus, the zero-dispersion wavelength, toward the minimum-loss window at approximately 1550 nm. The engineering tradeoff is a slight increase in the minimum attenuation coefficient. Such fiber is called dispersion-shifted fiber.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

<span class="mw-page-title-main">Optical ring resonators</span>

An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.

<span class="mw-page-title-main">Photonic-crystal fiber</span> Class of optical fiber based on the properties of photonic crystals

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber, holey fiber, hole-assisted fiber, and Bragg fiber. Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

Arrayed waveguide gratings (AWG) are commonly used as optical (de)multiplexers in wavelength division multiplexed (WDM) systems. These devices are capable of multiplexing many wavelengths into a single optical fiber, thereby increasing the transmission capacity of optical networks considerably.

<span class="mw-page-title-main">Multi-mode optical fiber</span> Type of optical fiber mostly used for communication over short distances

Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 100 Gbit/s. Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion. The standard G.651.1 defines the most widely used forms of multi-mode optical fiber.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical fiber to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Optical networking is a means of communication that uses signals encoded in light to transmit information in various types of telecommunications networks. These include limited range local-area networks (LAN) or wide-area networks (WAN), which cross metropolitan and regional areas as well as long-distance national, international and transoceanic networks. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet and telecommunication networks that transmit the vast majority of all human and machine-to-machine information.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

<span class="mw-page-title-main">Double-clad fiber</span>

Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

The Mamyshev 2R regenerator is an all-optical regenerator used in optical communications. In 1998, Pavel V. Mamyshev of Bell Labs proposed and patented the use of the self-phase modulation (SPM) for single channel optical pulse reshaping and re-amplification. More recent applications target the field of ultrashort high peak-power pulse generation.

<span class="mw-page-title-main">Orbital angular momentum multiplexing</span> Optical multiplexing technique

Orbital angular momentum (OAM) multiplexing is a physical layer method for multiplexing signals carried on electromagnetic waves using the orbital angular momentum of the electromagnetic waves to distinguish between the different orthogonal signals.

<span class="mw-page-title-main">Yasuharu Suematsu</span> Japanese scientist

Yasuharu Suematsu is a researcher and educator in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology.

An erbium-doped waveguide amplifier is a type of an optical amplifier enhanced with erbium. It is a close relative of an EDFA, erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDFA. Both of them can be used to amplify infrared light at wavelengths in optical communication bands between 1500 and 1600 nm. However, whereas an EDFA is made using a free-standing fiber, an EDWA is typically produced on a planar substrate, sometimes in ways that are very similar to the methods used in electronic integrated circuit manufacturing. Therefore, the main advantage of EDWAs over EDFAs lies in their potential to be intimately integrated with other optical components on the same planar substrate and thus making EDFAs unnecessary.

References

  1. Gambling, W.A. (November 2000). "The rise and rise of optical fibers". IEEE Journal of Selected Topics in Quantum Electronics. 6 (6): 1084–1093. doi:10.1109/2944.902157. ISSN   1077-260X. S2CID   23158230.
  2. Chen, Xin; Himmelreich, James E.; Hurley, Jason E.; Zhou, Chi; Jiang, Qun; Qin, Yang; Li, Junjie; Wu, Chris; Chen, Hao; Coleman, Doug; Li, Ming-Jun (2019-01-15). "Universal Fiber for Short-Distance Optical Communications". Journal of Lightwave Technology. 37 (2): 389–395. doi:10.1109/JLT.2018.2886954. S2CID   67871047.
  3. Essiambre, René-Jean; Kramer, Gerhard; Winzer, Peter J.; Foschini, Gerard J.; Goebel, Bernhard (2010-02-25). "Capacity Limits of Optical Fiber Networks". Journal of Lightwave Technology. 28 (4): 662–701. doi:10.1109/JLT.2009.2039464. ISSN   1558-2213. S2CID   21953841.
  4. Olsson, N.A. (July 1989). "Lightwave systems with optical amplifiers". Journal of Lightwave Technology. 7 (7): 1071–1082. doi:10.1109/50.29634. ISSN   0733-8724.
  5. Puttnam, Benjamin J.; Rademacher, Georg; Luís, Ruben S. (2021-09-20). "Space-division multiplexing for optical fiber communications". Optica. 8 (9): 1186–1203. doi:10.1364/OPTICA.427631. ISSN   2334-2536.
  6. Winzer, Peter J.; Neilson, David T.; Chraplyvy, Andrew R. (2018-09-03). "Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]". Optics Express. 26 (18): 24190–24239. doi:10.1364/OE.26.024190. ISSN   1094-4087. PMID   30184909. S2CID   52168806.
  7. Okamoto, Katsunari (2006-01-01), Okamoto, Katsunari (ed.), "Chapter 3 - Optical fibers", Fundamentals of Optical Waveguides (Second Edition), Burlington: Academic Press, pp. 57–158, ISBN   978-0-12-525096-2 , retrieved 2021-11-21
  8. "Non Dispersion Shifted Fiber". Timbercon. Retrieved 2021-11-21.
  9. Cohen, L. G.; Lin, Chinlon; French, W. G. (1979-06-07). "Tailoring zero chromatic dispersion into the 1.5–1.6 μm low-loss spectral region of single-mode fibres". Electronics Letters. 15 (12): 334–335. doi:10.1049/el:19790237. ISSN   1350-911X.
  10. Grüner-Nielsen, Lars; Qian, Yujun; Pálsdóttir, Bera; Gaarde, Peter Borg; Dyrbøl, Susanne; Veng, Torben; Qian, Yifei; Boncek, Raymond; Lingle, Robert (2002-03-17). "Module for simultaneous C + L-band dispersion compensation and Raman amplification". Optical Fiber Communications Conference (2002), Paper TuJ6. Optical Society of America: TuJ6.
  11. Mears, R. J.; Reekie, L.; Jauncey, I. M.; Payne, D. N. (1987-09-10). "Low-noise erbium-doped fibre amplifier operating at 1.54μm". Electronics Letters. 23 (19): 1026–1028. doi:10.1049/el:19870719. ISSN   1350-911X.
  12. Noda, J.; Okamoto, K.; Sasaki, Y. (August 1986). "Polarization-maintaining fibers and their applications". Journal of Lightwave Technology. 4 (8): 1071–1089. doi:10.1109/JLT.1986.1074847. ISSN   1558-2213.