Allan Blaer

Last updated

Allan Blaer (born 1942) is a physicist, professor emeritus and special lecturer at Columbia University in New York City. He received his undergraduate degree from Columbia University in 1964, where he was the valedictorian. He later went on to obtain his PhD in physics at the same institution. He has done research in both theoretical and experimental physics. In quantum field theory, he worked on phase transitions in low-temperature bosonic and fermionic systems, quantum field theory anomalies, dyons and magnetic monopoles in non-abelian gauge theories, and renormalization theory. In experimental physics, he has worked on precision measurement of vacuum polarization in muonic atoms to test quantum electrodynamics.

Blaer was the director of undergraduate studies until 2008. Alongside a group of physics majors, Blaer established the Columbia University Chapter of the Society of Physics Students in November 1980. Until 2016, he ran the highly selective Columbia University Science Honors Program.

Blaer has also earned a reputation for being an excellent teacher of physics, particularly for his graduate classical electrodynamics course at Columbia, for which he has taught for decades.

Publications

Related Research Articles

Quantum 1/f noise is an intrinsic and fundamental part of quantum mechanics. Fighter pilots, photographers, and scientists all appreciate the higher quality of images and signals resulting from the consideration of quantum 1/f noise. Engineers have battled unwanted 1/f noise since 1925, giving it poetic names due to its mysterious nature. The Quantum 1/f noise theory was developed about 50 years later, describing the nature of 1/f noise, allowing it the be explained and calculated via straightforward engineering formulas. It allows for the low-noise optimization of materials, devices and systems of most high-technology applications of modern industry and science. The theory includes the conventional and coherent quantum 1/f effects (Q1/fE). Both effects are combined in a general engineering formula, and present in Q1/f noise, which is itself most of fundamental 1/f noise. The latter is defined as the result of the simultaneous presence of nonlinearity and a certain type of homogeneity in a system, and can be quantum or classical.

<span class="mw-page-title-main">Two-photon physics</span> Branch of particle physics concerning interactions between two photons

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

<span class="mw-page-title-main">Schwinger effect</span> Decay of strong electromagnetic fields into particles

The Schwinger effect is a predicted physical phenomenon whereby matter is created by a strong electric field. It is also referred to as the Sauter–Schwinger effect, Schwinger mechanism, or Schwinger pair production. It is a prediction of quantum electrodynamics (QED) in which electron–positron pairs are spontaneously created in the presence of an electric field, thereby causing the decay of the electric field. The effect was originally proposed by Fritz Sauter in 1931 and further important work was carried out by Werner Heisenberg and Hans Heinrich Euler in 1936, though it was not until 1951 that Julian Schwinger gave a complete theoretical description.

In quantum field theory, a bosonic field is a quantum field whose quanta are bosons; that is, they obey Bose–Einstein statistics. Bosonic fields obey canonical commutation relations, as distinct from the canonical anticommutation relations obeyed by fermionic fields.

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.

For classical dynamics at relativistic speeds, see relativistic mechanics.

Harry L. Swinney is an American physicist noted for his contributions to the field of nonlinear dynamics.

The term R-matrix has several meanings, depending on the field of study.

Professor David Pegg is an emeritus professor in theoretical physics at Griffith University, Australia. In his career, he has made numerous contributions to NMR, quantum optics and conceptual physics including the nature of time. He has published approximately 200 papers and his h-index is at least 42. He is a fellow of the Australian Academy of Science and a Corresponding Fellow of the Royal Society of Edinburgh. He is a recipient of the Harrie Massey Medal for Australian physics and of the Centenary Medal for his contribution to quantum theory. He is best known for the Pegg-Barnett phase formalism that provides a quantum mechanical description of the phase of light, for the invention of the DEPT sequence for nuclear magnetic resonance and for the invention of the quantum scissors device.

<span class="mw-page-title-main">John Iliopoulos</span> Greek physicist

John (Jean) Iliopoulos is a Greek physicist. He is the first person to present the Standard Model of particle physics in a single report. He is best known for his prediction of the charm quark with Sheldon Glashow and Luciano Maiani. Iliopoulos is also known for demonstrating the cancellation of anomalies in the Standard model. He is further known for the Fayet-Iliopoulos D-term formula, which was introduced in 1974. He is currently an honorary member of Laboratory of theoretical physics of École Normale Supérieure, Paris.

<span class="mw-page-title-main">Feynman checkerboard</span> Fermion path integral approach in 1+1 dimensions

The Feynman checkerboard, or relativistic chessboard model, was Richard Feynman’s sum-over-paths formulation of the kernel for a free spin-½ particle moving in one spatial dimension. It provides a representation of solutions of the Dirac equation in (1+1)-dimensional spacetime as discrete sums.

<span class="mw-page-title-main">Jonathan Dowling</span> Irish-American physicist (1955–2020)

Jonathan P. Dowling was an Irish-American researcher and professor in theoretical physics, known for his work on quantum technology, particularly for exploiting quantum entanglement for applications to quantum metrology, quantum sensing, and quantum imaging.

<span class="mw-page-title-main">Mark Trodden</span> English physicist (born 1968)

Mark Trodden is a theoretical cosmologist and particle physicist. He is the Fay R. and Eugene L. Langberg Professor of Physics and Co-Director of the Center for Particle Cosmology at the University of Pennsylvania.

<span class="mw-page-title-main">Xiao-Gang Wen</span> Chinese-American physicist

Xiao-Gang Wen is a Chinese-American physicist. He is a Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His expertise is in condensed matter theory in strongly correlated electronic systems. In Oct. 2016, he was awarded the Oliver E. Buckley Condensed Matter Prize.

<span class="mw-page-title-main">David Ceperley</span>

David Matthew Ceperley is a theoretical physicist in the physics department at the University of Illinois Urbana-Champaign or UIUC. He is a world expert in the area of Quantum Monte Carlo computations, a method of calculation that is generally recognised to provide accurate quantitative results for many-body problems described by quantum mechanics.

Magnetic catalysis is a physics phenomenon, which is defined as an enhancement of dynamical symmetry breaking by an external magnetic field in quantum field theory, used for the description of quantum (quasi-)particles in particle physics, nuclear physics and condensed matter physics. The underlying phenomenon is a consequence of the strong tendency of a magnetic field to enhance binding of oppositely charged particles into bound states. The catalyzing effect comes from a partial restriction of the motion of charged particles in the directions perpendicular to the direction of the magnetic field. Commonly, the magnetic catalysis is specifically associated with spontaneous breaking of flavor or chiral symmetry in quantum field theory, which is enhanced or triggered by the presence of an external magnetic field.

<span class="mw-page-title-main">James P. Gordon</span> American physicist

James Power Gordon was an American physicist known for his work in the fields of optics and quantum electronics. His contributions include the design, analysis and construction of the first maser in 1954 as a doctoral student at Columbia University under the supervision of C. H. Townes, development of the quantal equivalent of Shannon's information capacity formula in 1962, development of the theory for the diffusion of atoms in an optical trap in 1980, and the discovery of what is now known as the Gordon-Haus effect in soliton transmission, together with H. A. Haus in 1986. Gordon was a member of the National Academy of Engineering and the National Academy of Sciences.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

Kennedy J. Reed is an American theoretical atomic physicist in the Theory Group in the Physics & Advanced Technologies Directorate at Lawrence Livermore National Laboratory (LLNL) and a founder of the National Physical Science Consortium (NPSC), a group of about 30 universities that provides physics fellowships for women and minorities.

Kenneth Alan Johnson was an American theoretical physicist. He was professor of physics at MIT, a leader in the study of quantum field theories and the quark substructure of matter. Johnson contributed to the understanding of symmetry and anomalies in quantum field theories and to models of quark confinement and dynamics in quantum chromodynamics.