Allogenic succession

Last updated

In ecology, allogenic succession is succession driven by the abiotic components of an ecosystem. [1] In contrast, autogenic succession is driven by the biotic components of the ecosystem. [1] An allogenic succession can be initiated in a number of ways which can include:

Contents

Allogenic succession can happen on a time scale that is proportionate with the disturbance. For example, allogenic succession that is the result of non-anthropogenic climate change can happen over thousands of years. [3]

Example

The majority of Salt Marsh development comes from allogenic succession. [4]   The constant exposure to water in the intertidal zone causes the soil of a salt marsh to change over time.  This results in sedimentation and nutrient buildup that also slowly raises the level of the land.  What started as a sandy soil with a slightly high pH level, eventually becomes a loamy soil with a more neutral pH level.  During this period, the soil-salinity will also change by starting low and eventually rising to higher levels from continued seawater exposure.  

Glacier forelands are another example of ecosystems that form from autogenic but also partly allogenic succession. [5]   The importance of this is estimated to be higher in earlier successional stages, regarding rock formations, slope angles and soil composition.

See also

Related Research Articles

<span class="mw-page-title-main">Biome</span> Biogeographical unit with a particular biological community

A biome is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. Biomes may span more than one continent. A biome encompasses multiple ecosystems within its boundaries. It can also comprise a variety of habitats.

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Marsh</span> Low-lying and seasonally waterlogged land

In ecology, a marsh is a wetland that is dominated by herbaceous plants rather than by woody plants. More in general, the word can be used for any low-lying and seasonally waterlogged terrain. In Europe and in agricultural literature low-lying meadows that require draining and embanked polderlands are also referred to as marshes or marshland.

<span class="mw-page-title-main">Salt marsh</span> Coastal ecosystem between land and open saltwater that is regularly flooded

A salt marsh, saltmarsh or salting, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Pioneer species</span> First species to colonize or inhabit damaged ecosystems

Pioneer species are resilient species that are the first to colonize barren environments, or to repopulate disrupted biodiverse steady-state ecosystems as part of ecological succession. A number of kinds of events can create good conditions for pioneers, including disruption by natural disasters, such as wildfire, flood, mudslide, lava flow or a climate-related extinction event or by anthropogenic habitat destruction, such as through land clearance for agriculture or construction or industrial damage. Pioneer species play an important role in creating soil in primary succession, and stabilizing soil and nutrients in secondary succession.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

<span class="mw-page-title-main">Ecosystem engineer</span> Ecological niche

An ecosystem engineer is any species that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

<span class="mw-page-title-main">Environmental degradation</span> Any change or disturbance to the environment perceived to be deleterious or undesirable

Environmental degradation is the deterioration of the environment through depletion of resources such as: quality of air, water and soil, the destruction of ecosystems, habitat destruction, the extinction of wildlife, and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. The environmental degradation process amplifies the impact of environmental issues which leave lasting impacts on the environment.

<span class="mw-page-title-main">Ecosystem ecology</span> Study of living and non-living components of ecosystems and their interactions

Ecosystem ecology is the integrated study of living (biotic) and non-living (abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals.

<span class="mw-page-title-main">Tidal marsh</span> Marsh subject to tidal change in water

A tidal marsh is a marsh found along rivers, coasts and estuaries which floods and drains by the tidal movement of the adjacent estuary, sea or ocean. Tidal marshes experience many overlapping persistent cycles, including diurnal and semi-diurnal tides, day-night temperature fluctuations, spring-neap tides, seasonal vegetation growth and decay, upland runoff, decadal climate variations, and centennial to millennial trends in sea level and climate.

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Seral community</span> Intermediate stage in ecological succession

A seral community is an intermediate stage found in ecological succession in an ecosystem advancing towards its climax community. In many cases more than one seral stage evolves until climax conditions are attained. A prisere is a collection of seres making up the development of an area from non-vegetated surfaces to a climax community.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

<span class="mw-page-title-main">Intertidal ecology</span> Study of ecosystems, where organisms live between the low and high tide lines

Intertidal ecology is the study of intertidal ecosystems, where organisms live between the low and high tide lines. At low tide, the intertidal is exposed whereas at high tide, the intertidal is underwater. Intertidal ecologists therefore study the interactions between intertidal organisms and their environment, as well as between different species of intertidal organisms within a particular intertidal community. The most important environmental and species interactions may vary based on the type of intertidal community being studied, the broadest of classifications being based on substrates—rocky shore and soft bottom communities.

"Auto-" meaning self or same, and "-genic" meaning producing or causing. Autogenic succession refers to ecological succession driven by biotic factors within an ecosystem and although the mechanisms of autogenic succession have long been debated, the role of living things in shaping the progression of succession was realized early on. Presently, there is more of a consensus that the mechanisms of facilitation, tolerance, and inhibition all contribute to autogenic succession. The concept of succession is most often associated with communities of vegetation and forests, though it is applicable to a broader range of ecosystems. In contrast, allogenic succession is driven by the abiotic components of the ecosystem.

<span class="mw-page-title-main">Soil carbon</span> Solid carbon stored in global soils

Soil carbon is the solid carbon stored in global soils. This includes both soil organic matter and inorganic carbon as carbonate minerals. It is vital to the soil capacity in our ecosystem. Soil carbon is a carbon sink in regard to the global carbon cycle, playing a role in biogeochemistry, climate change mitigation, and constructing global climate models. Microorganisms play an important role in breaking down carbon in the soil. Changes in their activity due to rising temperatures could possibly influence and even contribute to climate change. Human activities have caused a massive loss of soil organic carbon. For example, anthropogenic fires destroy the top layer of the soil, exposing soil to excessive oxidation.

<span class="mw-page-title-main">Plant ecology</span> The study of effect of the environment on the abundance and distribution of plants

Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.

<span class="mw-page-title-main">Salt marsh die-off</span> Ecological disaster in low-elevation salt marshes

Salt marsh die-off is a term that has been used in the US and UK to describe the death of salt marsh cordgrass leading to subsequent degradation of habitat, specifically in the low marsh zones of salt marshes on the coasts of the Western Atlantic. Cordgrass normally anchors sediment in salt marshes; its loss leads to decreased substrate hardness, increased erosion, and collapse of creek banks into the water, ultimately resulting in decreased marsh health and productivity.

References

  1. 1 2 Martin, Elizabeth; Hine, Robert (2008). "Succession". A Dictionary of Biology (6th ed.). Oxford University Press. ISBN   978-0-19-920462-5 . Retrieved 12 January 2011.
  2. 9(i) Plant Succession
  3. "Ecological Succession in Biotic Community". 30 November 2014.
  4. Dini-Andreote, Francisco; Silva, Michele de Cássia Pereira e; Triadó-Margarit, Xavier; Casamayor, Emilio O.; Elsas, Jan Dirk van; Salles, Joana Falcão (October 2014). "Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning". The ISME Journal. 8 (10): 1989–2001. Bibcode:2014ISMEJ...8.1989D. doi:10.1038/ismej.2014.54. PMC   4184019 . PMID   24739625.
  5. Wojcik, Robin; Eichel, Jana; Bradley, James A.; Benning, Liane G. (1 July 2021). "How allogenic factors affect succession in glacier forefields". Earth-Science Reviews. 218: 103642. Bibcode:2021ESRv..21803642W. doi:10.1016/j.earscirev.2021.103642. hdl:1874/412195. ISSN   0012-8252. S2CID   235543727.