Alluaudite

Last updated
Alluaudite
Alluaudite 2 Sodium iron manganese phosphate Pleasant Valley Mine near Fourmile Custer County South Dakota 2264Spp.jpg
Alluaudite
General
Category Phosphate minerals
Formula
(repeating unit)
(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
IMA symbol Ald [1]
Strunz classification 8.AC.10
Dana classification38.2.3.6
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/c
Unit cell a = 11.03  Å, b = 12.53 Å
c = 6.4 Å; β = 97.57°; Z = 4
Identification
ColorDirty yellow to brownish yellow, grayish green; superficially dull greenish black, brownish black, black, when altered
Crystal habit Platy to radiating fibrous, nodular, granular, massive
Twinning Polysynthetic
Cleavage Distinct/ good on {100} and {010}, good on {110}
Mohs scale hardness5 – 5.5
Streak Brownish yellow
Diaphaneity Translucent
Specific gravity 3.4 – 3.5
Optical propertiesBiaxial (+)
Refractive index nα = 1.782 nβ = 1.802 nγ = 1.835
Birefringence δ = 0.053
Pleochroism X = pale olive-green, straw-yellow to greenish yellow; Z = pale olive-greenish to brownish yellow
2V angle Measured: 50° to 90°, calculated: 78°
References [2] [3] [4]

Alluaudite is a relatively common alkaline manganese iron phosphate mineral with the chemical formula (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3. It occurs as metasomatic replacement in granitic pegmatites and within phosphatic nodules in shales. [3]

It was first described in 1848 for an occurrence in Skellefteå, Västerbotten, Sweden. It was named by Alexis Damour after François Alluaud (II) (1778–1866). [2] [3] The mineral structure was first described in 1955. [5]

Related Research Articles

<span class="mw-page-title-main">Lazurite</span> Alumino-silicate mineral whose blue colour is due to a sulfide species and not copper

Lazurite is a tectosilicate mineral with sulfate, sulfur and chloride with formula (Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]. It is a feldspathoid and a member of the sodalite group. Lazurite crystallizes in the isometric system although well‐formed crystals are rare. It is usually massive and forms the bulk of the gemstone lapis lazuli.

<span class="mw-page-title-main">Spessartine</span> Nesosilicate, manganese aluminium garnet species

Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. This mineral is sometimes mistakenly referred to as spessartite.

<span class="mw-page-title-main">Lithiophilite</span>

Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend", as lithiophilite is usually found with lithium.

<span class="mw-page-title-main">Triphylite</span>

Triphylite is a lithium iron(II) phosphate mineral with the chemical formula LiFePO4. It is a member of the triphylite group and forms a complete solid solution series with the lithium manganese(II) phosphate, lithiophilite. Triphylite crystallizes in the orthorhombic crystal system. It rarely forms prismatic crystals and is more frequently found in hypidiomorphic rock. It is bluish- to greenish-gray in color, but upon alteration becomes brown to black.

<span class="mw-page-title-main">Brushite</span> Calcium phosphate mineral

Brushite is a phosphate mineral with the chemical formula CaHPO4·2H2O. Crystals of the pure compound belong to the monoclinic space group C2/c and are colorless. It is the phosphate analogue of the arsenate pharmacolite.

<span class="mw-page-title-main">Calderite</span> Mineral in the garnet group

Calderite is a mineral in the garnet group with the chemical formula (Mn2+, Ca)3(Fe3+, Al)2(SiO4)3.

<span class="mw-page-title-main">Jacobsite</span>

Jacobsite is a manganese iron oxide mineral. It is in the spinel group and forms a solid solution series with magnetite. The chemical formula is (Mn,Mg)Fe2O4 or with oxidation states and substitutions: (Mn2+,Fe2+,Mg)(Fe3+,Mn3+)2O4.

<span class="mw-page-title-main">Neptunite</span>

Neptunite is a silicate mineral with the formula KNa2Li(Fe2+, Mn2+)2Ti2Si8O24. With increasing manganese it forms a series with mangan-neptunite. Watatsumiite is the variety with vanadium replacing the titanium in the formula.

<span class="mw-page-title-main">Alabandite</span> Sulfide mineral

Alabandite or alabandine is a rarely occurring manganese sulfide mineral. It crystallizes in the cubic crystal system with the chemical composition Mn2+S and develops commonly massive to granular aggregates, but rarely also cubic or octahedral crystals to 1 cm.

<span class="mw-page-title-main">Hureaulite</span>

Hureaulite is a manganese phosphate with the formula Mn2+5(PO3OH)2(PO4)2·4H2O. It was discovered in 1825 and named in 1826 for the type locality, Les Hureaux, Saint-Sylvestre, Haute-Vienne, Limousin, France. It is sometimes written as huréaulite, but the IMA does not recommend this for English language text.

<span class="mw-page-title-main">Tinaksite</span>

Tinaksite (chemical formula K2Na(Ca,Mn2+)2TiO[Si7O18(OH)]) is a mineral found in northern Russia. Tinaksite can be grayish-white, yellowish, orange, or brown, and it is often found in charoite. Its name is derived from its composition: titanium (Ti), sodium (Na) potassium (K) and silicon (Si). The International Mineralogical Association first recognized tinaksite as a mineral in 1965.

<span class="mw-page-title-main">Edenite</span> Amphibole, double chain inosilicate mineral

Edenite is a double chain silicate mineral of the amphibole group with the general chemical composition NaCa2Mg5(Si7Al)O22(OH)2. Edenite is named for the locality of Edenville, Orange County, New York, where it was first described.

<span class="mw-page-title-main">Lipscombite</span>

Lipscombite (Fe2+,Mn2+)(Fe3+)2(PO4)2(OH)2 is a green gray, olive green, or black. phosphate-based mineral containing iron, manganese, and iron phosphate.

<span class="mw-page-title-main">Shigaite</span>

Shigaite is a mineral with formula NaAl3(Mn2+)6(SO4)2(OH)18·12H2O that typically occurs as small, hexagonal crystals or thin coatings. It is named for Shiga Prefecture, Japan, where it was discovered in 1985. The formula was significantly revised in 1996, identifying sodium as a previously unknown constituent.

<span class="mw-page-title-main">Serandite</span> Mineral

Serandite is a mineral with formula Na(Mn2+,Ca)2Si3O8(OH). The mineral was discovered in Guinea in 1931 and named for J. M. Sérand. Serandite is generally red, brown, black or colorless. The correct name lacks an accent.

<span class="mw-page-title-main">Messelite</span>

Messelite is a mineral with formula Ca2(Fe2+,Mn2+)(PO4)2·2H2O. It was discovered in Germany and described in 1890. The mineral was subsequently discredited in 1940, reinstated and named neomesselite in 1955, and the name restored to messelite in 1959.

Falsterite is a rare phosphate mineral with the formula Ca2MgMn2+2(Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14. It is a pegmatitic mineral, related to the currently approved mineral ferraioloite.

Ferraioloite is a rare mineral with formula MgMn2+4(Fe2+0.5Al0.5)4Zn4(PO4)8(OH)4(H2O)20. It is related to the phosphate mineral falsterite. Ferraioloite was found in pegmatites of the Foote Lithium Company Mine, Cleveland County, North Carolina, US. The name honors James (Jim) A. Ferraiolo (1947–2014).

Maneckiite is a rare phosphate mineral with the formula(Na[])Ca2Fe2+2(Fe3+Mg)Mn2(PO4)6•2H2O. It was found in Michałkowa, Góry Sowie Block, Lower Silesia, Poland.

<span class="mw-page-title-main">Strunzite</span>

Strunzite (Mn2+Fe3+2(PO4)2(OH)2{{·}}6H2O) is a light yellow mineral of the strunzite group, first discovered in 1957.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Alluaudite on Mindat.org
  3. 1 2 3 "Alluaudite in the Handbook of Mineralogy" (PDF). Archived from the original (PDF) on 2016-03-03. Retrieved 2009-12-21.
  4. Alluaudite data on Webmineral
  5. Nowagiel, Maciej; Samsel, Mateusz J.; Pietrzak, Tomasz K. (2021-09-01). "Towards the High Phase Purity of Nanostructured Alluaudite-Type Glass-Ceramics Cathode Materials for Sodium Ion Batteries". Materials. 14 (17): 4997. Bibcode:2021Mate...14.4997N. doi: 10.3390/ma14174997 . PMC   8434363 . PMID   34501086.