Almen strip

Last updated

An Almen strip is a thin strip of SAE 1070 steel used to quantify the intensity of a shot peening process.

Developed and patented by John O. Almen, the strip was originally supported by 2 knife edges; later improvements see it being supported on 4 small balls. The strip is placed in the chamber in place of the item to be shot peened, usually near to an area of the item where the result is deemed critical, sometimes located by a special fixture. Compressive stress introduced by the peening operation causes the strip to deform into an arch, which is measured using a gauge.

Almen strips are classified into 3 types: 'A', 'N', and 'C'. They differ in their thickness, while they have the same width and length.

Although similar, the specification for Almen strip dimensions of the same type slightly vary from one company/organization to another. The Almen strips are made from plain carbon steel SAE 1070 and have hardness about 45 HRC.

This test is widely used and the requirements for check are specified in standards. The most rigid requirements are applicable for Almen strips and checking devices (Almen gauges) used in the aerospace industry. The generic requirements can be found in SAE specifications.

Another operation to gauge the intensity of a shot peening process is the use of an Almen round, developed by R. Bosshard.


Related Research Articles

<span class="mw-page-title-main">Scythe</span> Agricultural reaping hand tool

A scythe is an agricultural hand tool for mowing grass or harvesting crops. It is historically used to cut down or reap edible grains, before the process of threshing. The scythe has been largely replaced by horse-drawn and then tractor machinery, but is still used in some areas of Europe and Asia. Reapers are bladed machines that automate the cutting of the scythe, and sometimes subsequent steps in preparing the grain or the straw or hay.

A die is a specialized machine tool used in manufacturing industries to cut and/or form material to a desired shape or profile. Stamping dies are used with a press, as opposed to drawing dies and casting dies which are not. Like molds, dies are generally customized to the item they are used to create.

<span class="mw-page-title-main">Ball-peen hammer</span> Type of hammer used in metalworking

A ball-peen or ball peinhammer, also known as a machinist's hammer, is a type of peening hammer used in metalworking. It has two heads, one flat and the other, called the peen, rounded. It is distinguished from a cross-peen hammer, diagonal-peen hammer, point-peen hammer, or chisel-peen hammer by having a hemispherical peen.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes.

<span class="mw-page-title-main">Shot peening</span> Cold metal working process to produce compressive residual stress

Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.

<span class="mw-page-title-main">Residual stress</span> Stresses which remain in a solid material after the original cause is removed

In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

Metalworking hand tools are hand tools that are used in the metalworking field. Hand tools are powered solely by the operator.

<span class="mw-page-title-main">Surface finishing</span> Range of processes that alter the surface of an item to achieve a certain property

Surface finishing is a broad range of industrial processes that alter the surface of a manufactured item to achieve a certain property. Finishing processes may be employed to: improve appearance, adhesion or wettability, solderability, corrosion resistance, tarnish resistance, chemical resistance, wear resistance, hardness, modify electrical conductivity, remove burrs and other surface flaws, and control the surface friction. In limited cases some of these techniques can be used to restore original dimensions to salvage or repair an item. An unfinished surface is often called mill finish.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

<span class="mw-page-title-main">Powder coating</span> Type of coating applied as a free-flowing, dry powder

Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a hard finish that is tougher than conventional paint. Powder coating is mainly used for coating of metals, such as household appliances, aluminium extrusions, drum hardware, automobiles, and bicycle frames. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated due to the minimum heat and oven dwell time required to process these components.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

Laser peening (LP), or laser shock peening (LSP), is a surface engineering process used to impart beneficial residual stresses in materials. The deep, high-magnitude compressive residual stresses induced by laser peening increase the resistance of materials to surface-related failures, such as fatigue, fretting fatigue, and stress corrosion cracking. Laser shock peening can also be used to strengthen thin sections, harden surfaces, shape or straighten parts, break up hard materials, compact powdered metals and for other applications where high-pressure, short duration shock waves offer desirable processing results.

<span class="mw-page-title-main">Sandblasting</span> Method of marking or cleaning a surface

Sandblasting, sometimes known as abrasive blasting, is the operation of forcibly propelling a stream of abrasive material against a surface under high pressure to smooth a rough surface, roughen a smooth surface, shape a surface or remove surface contaminants. A pressurised fluid, typically compressed air, or a centrifugal wheel is used to propel the blasting material. The first abrasive blasting process was patented by Benjamin Chew Tilghman on 18 October 1870.

<span class="mw-page-title-main">Cold-formed steel</span> Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

<span class="mw-page-title-main">Ring, slide and hook</span>

Rings, slides and hooks are the accessories used in intimate apparel/lingerie used for adjustment and decorative functions. Rings, slides and hooks are commonly made of plastic and nylon coated metal and stainless steel.

<span class="mw-page-title-main">Steel abrasive</span> Steel particles used as abrasive material

Steel abrasives are steel particles that are used as abrasive or peening media. They are usually available in two different shapes that address different industrial applications.

Metal Improvement Company LLC (MIC), a business unit of the Surface Technologies Division of Curtiss-Wright Corporation, is a company specializing in metal surface treatments.

An Almen round is a thin round disk used to quantify the intensity of a shot peening process. Developed in 1994 by Rudolf Bosshard in Switzerland, it is a modification of the Almen strip method, which is used worldwide as a surface treatment testing method in the field of shot peening. The basic principle is the same, but due to the simple shape and minimized size, the Almen round is more suitable for automated processing and installation on dummy rigs. Also instead of the Almen block according SAE J442, here a matching device is used and if connected to electronic processing unit, the Almen value according AMS-S-13165 can be evaluated in one run.

Shot peening can be used to recondition distorted steel conveyor belts. The shot peening process is quick and cost-effective compared with other methods and does not interrupt daily production. A deformed steel belt has the following disadvantages:

<span class="mw-page-title-main">Peening</span> Process of working a metals surface to improve material properties

In metallurgy, peening is the process of working a metal's surface to improve its material properties, usually by mechanical means, such as hammer blows, by blasting with shot, focusing light, or in recent years, with water column impacts and cavitation jets. With the notable exception of laser peening, peening is normally a cold work process tending to expand the surface of the cold metal, thus inducing compressive stresses or relieving tensile stresses already present. It can also encourage strain hardening of the surface metal.