Alternative stress measures

Last updated

In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3]

Contents

  1. The Kirchhoff stress ().
  2. The Nominal stress ().
  3. The first Piola–Kirchhoff stress (). This stress tensor is the transpose of the nominal stress ().
  4. The second Piola–Kirchhoff stress or PK2 stress ().
  5. The Biot stress ()

Definitions

Consider the situation shown in the following figure. The following definitions use the notations shown in the figure.

Quantities used in the definition of stress measures StressMeasures.png
Quantities used in the definition of stress measures

In the reference configuration , the outward normal to a surface element is and the traction acting on that surface (assuming it deforms like a generic vector belonging to the deformation) is leading to a force vector . In the deformed configuration , the surface element changes to with outward normal and traction vector leading to a force . Note that this surface can either be a hypothetical cut inside the body or an actual surface. The quantity is the deformation gradient tensor, is its determinant.

Cauchy stress

The Cauchy stress (or true stress) is a measure of the force acting on an element of area in the deformed configuration. This tensor is symmetric and is defined via

or

where is the traction and is the normal to the surface on which the traction acts.

Kirchhoff stress

The quantity,

is called the Kirchhoff stress tensor, with the determinant of . It is used widely in numerical algorithms in metal plasticity (where there is no change in volume during plastic deformation). It can be called weighted Cauchy stress tensor as well.

Piola–Kirchhoff stress

Nominal stress/First Piola–Kirchhoff stress

The nominal stress is the transpose of the first Piola–Kirchhoff stress (PK1 stress, also called engineering stress) and is defined via

or

This stress is unsymmetric and is a two-point tensor like the deformation gradient.
The asymmetry derives from the fact that, as a tensor, it has one index attached to the reference configuration and one to the deformed configuration. [4]

Second Piola–Kirchhoff stress

If we pull back to the reference configuration we obtain the traction acting on that surface before the deformation assuming it behaves like a generic vector belonging to the deformation. In particular we have

or,

The PK2 stress () is symmetric and is defined via the relation

Therefore,

Biot stress

The Biot stress is useful because it is energy conjugate to the right stretch tensor . The Biot stress is defined as the symmetric part of the tensor where is the rotation tensor obtained from a polar decomposition of the deformation gradient. Therefore, the Biot stress tensor is defined as

The Biot stress is also called the Jaumann stress.

The quantity does not have any physical interpretation. However, the unsymmetrized Biot stress has the interpretation

Relations

Relations between Cauchy stress and nominal stress

From Nanson's formula relating areas in the reference and deformed configurations:

Now,

Hence,

or,

or,

In index notation,

Therefore,

Note that and are (generally) not symmetric because is (generally) not symmetric.

Relations between nominal stress and second P–K stress

Recall that

and

Therefore,

or (using the symmetry of ),

In index notation,

Alternatively, we can write

Relations between Cauchy stress and second P–K stress

Recall that

In terms of the 2nd PK stress, we have

Therefore,

In index notation,

Since the Cauchy stress (and hence the Kirchhoff stress) is symmetric, the 2nd PK stress is also symmetric.

Alternatively, we can write

or,

Clearly, from definition of the push-forward and pull-back operations, we have

and

Therefore, is the pull back of by and is the push forward of .

Summary of conversion formula

Key:

Conversion formulae
Equation for
(non isotropy)
(non isotropy)
(non isotropy) (non isotropy)

See also

Related Research Articles

In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Fokker–Planck equation Partial differential equation

In statistical mechanics, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

Stress (mechanics) Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each particle gets pushed against by all the surrounding particles. The container walls and the pressure-inducing surface push against them in (Newtonian) reaction. These macroscopic forces are actually the net result of a very large number of intermolecular forces and collisions between the particles in those molecules. Stress is frequently represented by a lowercase Greek letter sigma (σ).

Hookes law Principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance

Hooke's law is a law of physics that states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit, but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of the Lie group SU(N) as its target manifold, where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer-Cartan form of SU(N).

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.

Cauchy stress tensor Representation of mechanical stress at every point within a deformed 3D object

In continuum mechanics, the Cauchy stress tensor, true stress tensor, or simply called the stress tensor is a second order tensor named after Augustin-Louis Cauchy. The tensor consists of nine components that completely define the state of stress at a point inside a material in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector n to the traction vector T(n) across an imaginary surface perpendicular to n:

Hyperelastic material

A hyperelastic or Green elastic material is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

Viscoplasticity Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value .

Rock mass plasticity

Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last work.

Objective stress rate

In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.

The streamline upwind Petrov–Galerkin pressure-stabilizing Petrov–Galerkin formulation for incompressible Navier–Stokes equations can be used for finite element computations of high Reynolds number incompressible flow using equal order of finite element space by introducing additional stabilization terms in the Navier–Stokes Galerkin formulation.

References

  1. J. Bonet and R. W. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press.
  2. R. W. Ogden, 1984, Non-linear Elastic Deformations, Dover.
  3. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, third edition
  4. Three-Dimensional Elasticity. Elsevier. 1 April 1988. ISBN   978-0-08-087541-5.