Aluthge transform

Last updated

In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators. [1]

Contents

Definition

Let be a Hilbert space and let be the algebra of linear operators from to . By the polar decomposition theorem, there exists a unique partial isometry such that and , where is the square root of the operator . If and is its polar decomposition, the Aluthge transform of is the operator defined as:

More generally, for any real number , the -Aluthge transformation is defined as

Example

For vectors , let denote the operator defined as

An elementary calculation [2] shows that if , then

Notes

  1. Aluthge, Ariyadasa (1990). "On p-hyponormal operators for 0 < p < 1". Integral Equations Operator Theory. 13 (3): 307–315. doi:10.1007/bf01199886.
  2. Chabbabi, Fadil; Mbekhta, Mostafa (June 2017). "Jordan product maps commuting with the λ-Aluthge transform". Journal of Mathematical Analysis and Applications. 450 (1): 293–313. doi: 10.1016/j.jmaa.2017.01.036 .

Related Research Articles

Riesz representation theorem, sometimes called Riesz–Fréchet representation theorem, named after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural one as will be described next; a natural isomorphism.

In mathematics, a self-adjoint operator on a finite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint: for all vectors v and w. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, a trace-class operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and reserve "nuclear operator" for usage in more general topological vector spaces.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.

In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.

In mathematics, a dissipative operator is a linear operator A defined on a linear subspace D(A) of Banach space X, taking values in X such that for all λ > 0 and all xD(A)

Hilbert C*-modules are mathematical objects which generalise the notion of a Hilbert space, in that they endow a linear space with an "inner product" which takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras. In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke and Marc Rieffel, the latter in a paper which used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory, and provide the right framework to extend the notion of Morita equivalence to C*-algebras. They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory, and groupoid C*-algebras.

Hilbert space Mathematical generalization of Euclidean space to infinite dimensions

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is a vector space equipped with an inner product, an operation that allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

Given a Hilbert space with a tensor product structure a product numerical range is defined as a numerical range with respect to the subset of product vectors. In some situations, especially in the context of quantum mechanics product numerical range is known as local numerical range

Lie algebra extension Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

In quantum mechanics, weak measurements are a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem the system is necessarily disturbed by the measurement. In the literature weak measurements are also known as unsharp, fuzzy, dull, noisy, approximate, and gentle measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value.

The strongest locally convex topological vector space (TVS) topology on , the tensor product of two locally convex TVSs, making the canonical map separately continuous is called the inductive topology or the ι-topology. When X ⊗ Y is endowed with this topology then it is denoted by and called the inductive tensor product of X and Y.

This is a glossary for the terminology in a mathematical field of functional analysis.

References