Analytic network process

Last updated

The analytic network process (ANP) is a more general form of the analytic hierarchy process (AHP) used in multi-criteria decision analysis.

Contents

AHP structures a decision problem into a hierarchy with a goal, decision criteria, and alternatives, while the ANP structures it as a network. Both then use a system of pairwise comparisons to measure the weights of the components of the structure, and finally to rank the alternatives in the decision.

Hierarchy vs. network

In the AHP, each element in the hierarchy is considered to be independent of all the others—the decision criteria are considered to be independent of one another, and the alternatives are considered to be independent of the decision criteria and of each other. But in many real-world cases, there is interdependence among the items and the alternatives. ANP does not require independence among elements, so it can be used as an effective tool in these cases.

To illustrate this, consider a simple decision about buying an automobile. The decision maker may want to decide among several moderately-priced full-size sedans. He might choose to base his decision on only three factors: purchase price, safety, and comfort. Both the AHP and ANP would provide useful frameworks to use in making his decision.

The AHP would assume that purchase price, safety, and comfort are independent of one another, and would evaluate each of the sedans independently on those criteria.

The ANP would allow consideration of the interdependence of price, safety, and comfort. If one could get more safety or comfort by paying more for the automobile (or less by paying less), the ANP could take that into account. Similarly, the ANP could allow the decision criteria to be affected by the traits of the cars under consideration. If, for example, all the cars are very, very safe, the importance of safety as a decision criterion could appropriately be reduced.

Literature and community

Academic articles about ANP appear in journals dealing with the decision sciences, and several books have been written on the subject. [1] [2] [3] [4]

There are numerous practical applications of ANP, many of them involving complex decisions about benefits (B), opportunities (O), costs (C) and risks (R). Studying these applications can be very useful in understanding the complexities of the ANP. The literature contains hundreds of elaborately worked out examples of the process, developed by executives, managers, engineers, MBA and Ph.D. students and others from many countries. [5] About a hundred such uses are illustrated and discussed in The Encyclicon, a dictionary of decisions with dependence and feedback. [6]

Academics and practitioners meet biennially at the International Symposium on the Analytic Hierarchy Process (ISAHP), which, despite its name, devotes considerable attention to the ANP.

The steps

Understanding of the ANP is best achieved by using ANP software to work with previously-completed decisions. One of the field's standard texts lists the following steps: [2]

  1. Make sure that you understand the decision problem in detail, including its objectives, criteria and subcriteria, actors and their objectives and the possible outcomes of that decision. Give details of influences that determine how that decision may come out.
  2. Determine the control criteria and subcriteria in the four control hierarchies one each for the benefits, opportunities, costs and risks of that decision and obtain their priorities from paired comparison matrices. You may use the same control criteria and perhaps subcriteria for all of the four merits. If a control criterion or subcriterion has a global priority of 3% or less, you may consider carefully eliminating it from further consideration. The software automatically deals only with those criteria or subcriteria that have subnets under them. For benefits and opportunities, ask what gives the most benefits or presents the greatest opportunity to influence fulfillment of that control criterion. For costs and risks, ask what incurs the most cost or faces the greatest risk. Sometimes (very rarely), the comparisons are made simply in terms of benefits, opportunities, costs, and risks by aggregating all the criteria of each BOCR into their merit.
  3. Determine a complete set of network clusters (components) and their elements that are relevant to each and every control criterion. To better organize the development of the model as well as you can, number and arrange the clusters and their elements in a convenient way (perhaps in a column). Use the identical label to represent the same cluster and the same elements for all the control criteria.
  4. For each control criterion or subcriterion, determine the appropriate subset of clusters of the comprehensive set with their elements and connect them according to their outer and inner dependence influences. An arrow is drawn from a cluster to any cluster whose elements influence it.
  5. Determine the approach you want to follow in the analysis of each cluster or element, influencing (the suggested approach) other clusters and elements with respect to a criterion, or being influenced by other clusters and elements. The sense (being influenced or influencing) must apply to all the criteria for the four control hierarchies for the entire decision.
  6. For each control criterion, construct the supermatrix by laying out the clusters in the order they are numbered and all the elements in each cluster both vertically on the left and horizontally at the top. Enter in the appropriate position the priorities derived from the paired comparisons as subcolumns of the corresponding column of the supermatrix.
  7. Perform paired comparisons on the elements within the clusters themselves according to their influence on each element in another cluster they are connected to (outer dependence) or on elements in their own cluster (inner dependence). In making comparisons, you must always have a criterion in mind. Comparisons of elements according to which element influences a third element more and how strongly more than another element it is compared with are made with a control criterion or subcriterion of the control hierarchy in mind.
  8. Perform paired comparisons on the clusters as they influence each cluster to which they are connected with respect to the given control criterion. The derived weights are used to weight the elements of the corresponding column blocks of the supermatrix. Assign a zero when there is no influence. Thus obtain the weighted column stochastic supermatrix.
  9. Compute the limit priorities of the stochastic supermatrix according to whether it is irreducible (primitive or imprimitive [cyclic]) or it is reducible with one being a simple or a multiple root and whether the system is cyclic or not. Two kinds of outcomes are possible. In the first, all the columns of the matrix are identical and each gives the relative priorities of the elements from which the priorities of the elements in each cluster are normalized to one. In the second, the limit cycles in blocks and the different limits are summed and averaged and again normalized to one for each cluster. Although the priority vectors are entered in the supermatrix in normalized form, the limit priorities are put in idealized form because the control criteria do not depend on the alternatives.
  10. Synthesize the limiting priorities by weighting each idealized limit vector by the weight of its control criterion and adding the resulting vectors for each of the four merits: Benefits (B), Opportunities (O), Costs (C) and Risks (R). There are now four vectors, one for each of the four merits. An answer involving ratio values of the merits is obtained by forming the ratio BiOi / CiRi for alternative i from each of the four vectors. The synthesized ideals for all the control criteria under each merit may result in an ideal whose priority is less than one for that merit. Only an alternative that is ideal for all the control criteria under a merit receives the value one after synthesis for that merit. The alternative with the largest ratio is chosen for some decisions. Companies and individuals with limited resources often prefer this type of synthesis.
  11. Determine strategic criteria and their priorities to rate the top ranked (ideal) alternative for each of the four merits one at a time. Normalize the four ratings thus obtained and use them to calculate the overall synthesis of the four vectors. For each alternative, subtract the sum of the weighted costs and risks from the sum of the weighted benefits and opportunities.
  12. Perform sensitivity analysis on the final outcome. Sensitivity analysis is concerned with “what if” kinds of questions to see if the final answer is stable to changes in the inputs, whether judgments or priorities. Of special interest is to see if these changes change the order of the alternatives. How significant the change is can be measured with the Compatibility Index of the original outcome and each new outcome.

See also

Related Research Articles

<span class="mw-page-title-main">Thomas L. Saaty</span> Iraqi-American mathematician

Thomas L. Saaty was a Distinguished University Professor at the University of Pittsburgh, where he taught in the Joseph M. Katz Graduate School of Business. He is the inventor, architect, and primary theoretician of the Analytic Hierarchy Process (AHP), a decision-making framework used for large-scale, multiparty, multi-criteria decision analysis, and of the Analytic Network Process (ANP), its generalization to decisions with dependence and feedback. Later on, he generalized the mathematics of the ANP to the Neural Network Process (NNP) with application to neural firing and synthesis but none of them gain such popularity as AHP.

<span class="mw-page-title-main">Multiple-criteria decision analysis</span> Operations research that evaluates multiple conflicting criteria in decision making

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. It is also known as multiple attribute utility theory, multiple attribute value theory, multiple attribute preference theory, and multi-objective decision analysis.

<span class="mw-page-title-main">Analytic hierarchy process</span> Structured technique for organizing and analyzing complex decisions

In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s; Saaty partnered with Ernest Forman to develop Expert Choice software in 1983, and AHP has been extensively studied and refined since then. It represents an accurate approach to quantifying the weights of decision criteria. Individual experts’ experiences are utilized to estimate the relative magnitudes of factors through pair-wise comparisons. Each of the respondents compares the relative importance of each pair of items using a specially designed questionnaire. The relative importance of the criteria can be determined with the help of the AHP by comparing the criteria and, if applicable, the sub-criteria in pairs by experts or decision-makers. On this basis, the best alternative can be found.

Pairwise comparison generally is any process of comparing entities in pairs to judge which of each entity is preferred, or has a greater amount of some quantitative property, or whether or not the two entities are identical. The method of pairwise comparison is used in the scientific study of preferences, attitudes, voting systems, social choice, public choice, requirements engineering and multiagent AI systems. In psychology literature, it is often referred to as paired comparison.

Requirement prioritization is used in the Software product management for determining which candidate requirements of a software product should be included in a certain release. Requirements are also prioritized to minimize risk during development so that the most important or high risk requirements are implemented first. Several methods for assessing a prioritization of software requirements exist.

Value measuring methodology (VMM) is a tool that helps financial planners balance both tangible and intangible values when making investment decisions, and monitor benefits.

The rational planning model is a model of the planning process involving a number of rational actions or steps. Taylor (1998) outlines five steps, as follows:

For group decision-making, the hierarchical decision process (HDP) refines the classical analytic hierarchy process (AHP) a step further in eliciting and evaluating subjective judgements. These improvements, proposed initially by Dr. Jang Ra include the constant-sum measurement scale for comparing two elements, the logarithmic least squares method (LLSM) for computing normalized values, the sum of inverse column sums (SICS) for measuring the degree of (in)consistency, and sensitivity analysis of pairwise comparisons matrices. These subtle modifications address issues concerning normal AHP consistency and applicability in the process of constructing hierarchies: generating criteria, classifying/selecting criteria, and screening/selecting decision alternatives.

The International Symposium on the Analytic Hierarchy Process (ISAHP) is a biennial conference on multi-criteria decision analysis, particularly the analytic hierarchy process (AHP) and its extension the analytic network process (ANP), both developed by Thomas L. Saaty, and the combination of these with other methods. It brings together researchers, teachers and users of AHP and ANP to share their research and practical experience in making decisions incorporating these two processes.

Decision-making software is software for computer applications that help individuals and organisations make choices and take decisions, typically by ranking, prioritizing or choosing from a number of options.

This is a worked-through example showing the use of the analytic hierarchy process (AHP) in a practical decision situation.

The decision-making paradox is a phenomenon related to decision-making and the quest for determining reliable decision-making methods. It was first described by Triantaphyllou, and has been recognized in the related literature as a fundamental paradox in multi-criteria decision analysis (MCDA), multi-criteria decision making (MCDM) and decision analysis since then.

In decision-making, a rank reversal is a change in the rank ordering of the preferability of alternative possible decisions when, for example, the method of choosing changes or the set of other available alternatives changes. The issue of rank reversals lies at the heart of many debates in decision-making and multi-criteria decision-making, in particular.

This is a worked-through example showing the use of the analytic hierarchy process (AHP) in a practical decision situation.

Expert Choice is decision-making software that is based on multi-criteria decision making.

Decision Lens is online decision-making software that is based on multi-criteria decision making.

Super Decisions is decision-making software which works based on two multi-criteria decision making methods.

<span class="mw-page-title-main">Value tree analysis</span>

Value tree analysis is a multi-criteria decision-making (MCDM) implement by which the decision-making attributes for each choice to come out with a preference for the decision makes are weighted. Usually, choices' attribute-specific values are aggregated into a complete method. Decision analysts (DAs) distinguished two types of utility. The preferences of value are made among alternatives when there is no uncertainty. Risk preferences solves the attitude of DM to risk taking under uncertainty. This learning package focuses on deterministic choices, namely value theory, and in particular a decision analysis tool called a value tree.

Ernest Forman is an American scholar and academic. He is a Professor of Decision Sciences at the George Washington University's School of Business. He is a co-founder, along with Thomas Saaty, of Expert Choice and developed the first commercial implementation of the Analytic Hierarchy Process.

Ordinal priority approach (OPA) is a multiple-criteria decision analysis method that aids in solving the group decision-making problems based on preference relations.

References

  1. Saaty, Thomas L. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process. Pittsburgh, Pennsylvania: RWS Publications. ISBN   0-9620317-9-8.
  2. 1 2 Saaty, Thomas L. (2005). Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs and Risks. Pittsburgh, Pennsylvania: RWS Publications. ISBN   1-888603-06-2.
  3. Saaty, Thomas L.; Luis G. Vargas (2006). Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. New York: Springer. ISBN   0-387-33859-4.
  4. Saaty, Thomas L.; Brady Cillo (2009). The Encyclicon, Volume 2: A Dictionary of Complex Decisions using the Analytic Network Process. Pittsburgh, Pennsylvania: RWS Publications. ISBN   978-1-888603-09-5.
  5. In 2005, one book cited examples from the United States, Brazil, Chile, Czech Republic, Germany, India, Indonesia, Italy, Korea, Poland, Russia, Spain, Taiwan, and Turkey.
  6. Saaty, Thomas L.; Müjgan S. Özermir (2005). The Encyclicon: A Dictionary of Decisions with Dependence and Feedback Based on the Analytic Network Process. Pittsburgh, Pennsylvania: RWS Publications. ISBN   1-888603-05-4.