Analytic polyhedron

Last updated

In mathematics, especially several complex variables, an analytic polyhedron is a subset of the complex space Cn of the form

Contents

where D is a bounded connected open subset of Cn, are holomorphic on D and P is assumed to be relatively compact in D. [1] If above are polynomials, then the set is called a polynomial polyhedron. Every analytic polyhedron is a domain of holomorphy and it is thus pseudo-convex.

The boundary of an analytic polyhedron is contained in the union of the set of hypersurfaces

An analytic polyhedron is a Weil polyhedron, or Weil domain if the intersection of any k of the above hypersurfaces has dimension no greater than 2n-k. [2]

See also

Notes

  1. See ( Åhag et al. 2007 , p. 139) and ( Khenkin 1990 , p. 35).
  2. ( Khenkin 1990 , pp. 35–36).

Related Research Articles

<span class="mw-page-title-main">Holomorphic function</span> Complex-differentiable (mathematical) function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.

<span class="mw-page-title-main">Complex geometry</span> Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

<span class="mw-page-title-main">Guido Fubini</span> Italian mathematician

Guido Fubini was an Italian mathematician, known for Fubini's theorem and the Fubini–Study metric.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In the mathematical field of complex analysis, Nevanlinna theory is part of the theory of meromorphic functions. It was devised in 1925, by Rolf Nevanlinna. Hermann Weyl called it "one of the few great mathematical events of (the twentieth) century." The theory describes the asymptotic distribution of solutions of the equation f(z) = a, as a varies. A fundamental tool is the Nevanlinna characteristic T(r, f) which measures the rate of growth of a meromorphic function.

<span class="mw-page-title-main">Francesco Severi</span> Italian mathematician (1879–1961)

Francesco Severi was an Italian mathematician. He was the chair of the committee on Fields Medal on 1936, at the first delivery.

In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA and also published in the book Problems in the Theory of Dispersion Relations. Further proofs and generalizations of the theorem were given by R. Jost and H. Lehmann (1957), F. Dyson (1958), H. Epstein (1960), and by other researchers.

In mathematics, precisely in the theory of functions of several complex variables, a pluriharmonic function is a real valued function which is locally the real part of a holomorphic function of several complex variables. Sometimes such a function is referred to as n-harmonic function, where n ≥ 2 is the dimension of the complex domain where the function is defined. However, in modern expositions of the theory of functions of several complex variables it is preferred to give an equivalent formulation of the concept, by defining pluriharmonic function a complex valued function whose restriction to every complex line is a harmonic function with respect to the real and imaginary part of the complex line parameter.

<span class="mw-page-title-main">Renato Caccioppoli</span> 20th century Italian mathematician (1904–1959)

Renato Caccioppoli was an Italian mathematician, known for his contributions to mathematical analysis, including the theory of functions of several complex variables, functional analysis, measure theory.

In mathematics in complex analysis, the concept of holomorphic separability is a measure of the richness of the set of holomorphic functions on a complex manifold or complex-analytic space.

In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

In the theory of functions of several complex variables, Hartogs's extension theorem is a statement about the singularities of holomorphic functions of several variables. Informally, it states that the support of the singularities of such functions cannot be compact, therefore the singular set of a function of several complex variables must 'go off to infinity' in some direction. More precisely, it shows that an isolated singularity is always a removable singularity for any analytic function of n > 1 complex variables. A first version of this theorem was proved by Friedrich Hartogs, and as such it is known also as Hartogs's lemma and Hartogs's principle: in earlier Soviet literature, it is also called Osgood–Brown theorem, acknowledging later work by Arthur Barton Brown and William Fogg Osgood. This property of holomorphic functions of several variables is also called Hartogs's phenomenon: however, the locution "Hartogs's phenomenon" is also used to identify the property of solutions of systems of partial differential or convolution equations satisfying Hartogs type theorems.

<span class="mw-page-title-main">Gaetano Fichera</span> Italian mathematician

Gaetano Fichera was an Italian mathematician, working in mathematical analysis, linear elasticity, partial differential equations and several complex variables. He was born in Acireale, and died in Rome.

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

<span class="mw-page-title-main">Enzo Martinelli</span> Italian mathematician (1911–1999)

Enzo Martinelli was an Italian mathematician, working in the theory of functions of several complex variables: he is best known for his work on the theory of integral representations for holomorphic functions of several variables, notably for discovering the Bochner–Martinelli formula in 1938, and for his work in the theory of multi-dimensional residues.

In mathematics, the Bochner–Martinelli formula is a generalization of the Cauchy integral formula to functions of several complex variables, introduced by Enzo Martinelli (1938) and Salomon Bochner (1943).

In mathematics, the Bergman–Weil formula is an integral representation for holomorphic functions of several variables generalizing the Cauchy integral formula. It was introduced by Bergmann (1936) and Weil (1935).

<span class="mw-page-title-main">Giovanni Battista Rizza</span> Italian mathematician (1924–2018)

Giovanni Battista Rizza, officially known as Giambattista Rizza, was an Italian mathematician, working in the fields of complex analysis of several variables and in differential geometry: he is known for his contribution to hypercomplex analysis, notably for extending Cauchy's integral theorem and Cauchy's integral formula to complex functions of a hypercomplex variable, the theory of pluriharmonic functions and for the introduction of the now called Rizza manifolds.

<span class="mw-page-title-main">Aldo Andreotti</span> Italian mathematician

Aldo Andreotti was an Italian mathematician who worked on algebraic geometry, on the theory of functions of several complex variables and on partial differential operators. Notably he proved the Andreotti–Frankel theorem, the Andreotti–Grauert theorem, the Andreotti–Vesentini theorem and introduced, jointly with François Norguet, the Andreotti–Norguet integral representation for functions of several complex variables.

The Andreotti–Norguet formula, first introduced by Aldo Andreotti and François Norguet, is a higher–dimensional analogue of Cauchy integral formula for expressing the derivatives of a holomorphic function. Precisely, this formula express the value of the partial derivative of any multiindex order of a holomorphic function of several variables, in any interior point of a given bounded domain, as a hypersurface integral of the values of the function on the boundary of the domain itself. In this respect, it is analogous and generalizes the Bochner–Martinelli formula, reducing to it when the absolute value of the multiindex order of differentiation is 0. When considered for functions of n = 1 complex variables, it reduces to the ordinary Cauchy formula for the derivative of a holomorphic function: however, when n > 1, its integral kernel is not obtainable by simple differentiation of the Bochner–Martinelli kernel.

References