Animal reflectors

Last updated

Animal reflectors or mirrors are important to the survival of many kinds of animal, and, in some cases, have been mimicked by engineers developing photonic crystals. Examples are the scales of silvery fish, and the tapetum lucidum that causes the eyeshine of dogs and cats. All these reflectors work by interference of light in multilayer structures with dimensions less than a wavelength, so can be classed as photonic crystals. Other animal photonic crystals have evolved to reflect narrow spectra, producing animal coloration.

Contents

Functions of animal reflectors

Camouflage

The scales of silvery fish, by reflecting light from the flank make detection by a predator difficult because the reflected light is similar to the incident light in the absence of the prey (Fig. 1).

Focusing light

The eyes of some bivalve mollusks, such as the scallop (Pecten) use a concave mirror, the argentea, at the back of the eye, to create an image on the retina. The deep-sea ostracod Gigantocypris has eyes with parabolic reflectors. The compound eyes of long-bodied decapod crustaceans, such as shrimps and lobsters, use mirrors in square boxes [1]

Increasing retinal sensitivity

Most nocturnal vertebrates have a reflecting tapetum lucidum behind the retina, which produces the 'eyeshine' seen in cats and dogs. Incoming photons that are not absorbed by the photoreceptors are reflected back, increasing their chances of being absorbed and generating nerve signals.

Mechanisms of reflection

A. The cells of the tapetum of the cat contain arrays of rodlets with a spacing at about l/2. B. Different lattice planes have different spacings and reflect different wavelengths. C. The different domains of rodlets reflect different wavelengths to give an overall reflection with a wide spectral range. Animal Reflectors Fig 2.png
A. The cells of the tapetum of the cat contain arrays of rodlets with a spacing at about λ/2. B. Different lattice planes have different spacings and reflect different wavelengths. C. The different domains of rodlets reflect different wavelengths to give an overall reflection with a wide spectral range.

Schultze, in 1872, stated without reservation that reflection from the multilayered structure of the tapeta of Carnivora is by interference. [4] Rayleigh (1887) mentions that a reflector composed of a stack of thin transparent layers will reflect more strongly than a single layer, [5] but only in 1917 did he publish a mathematical analysis. [6] Multilayer reflectors were constructed by engineers in the 1950s (see dielectric mirror) and in 1966 M.F. Land published a full analysis of an animal reflector that included electron microscopy, optical measurements, and a clear explanation of the theory [7]

Reflectors with a one-dimensional multilayer structure

Animal multilayer reflectors work in the same way as a man-made dielectric mirror (or Bragg mirror) being composed of alternating layers of high and low refractive index, the thickness of each layer being 1/4 the wavelength most strongly reflected. [8] To reflect a wide range of wavelengths, the spacing must vary through the thickness of the stack. [9] Reflectors made of alternating layers of flat guanine crystals (refractive index, n = 1.83) and cytoplasm (n ≈ 1.33) have evolved independently in fish scales and in the tapeta of the eyes of elasmobranchs (Gur 2017). The tapetum of the bush-baby, Galago crassicaudatus, has a similar structure, but with crystals of riboflavin (n = 1.73).

Reflectors with a two-dimensional structure

The tapetum of Carnivora (cats, dogs, lions etc.) contains remarkably regular arrays of rodlets, and reflects light from planes of the lattice by Bragg's Law (Fig. 2A). Each domain of rodlets has a different spacing and reflects a different colour from the main plane (shown horizontal in Fig. 2B) so with near-parallel illumination, spots of different colors are seen (Fig.1C). Because there are lattice planes at many inclinations, the tapetum as a whole reflects diffusely and is scarcely iridescent.

Related Research Articles

<span class="mw-page-title-main">Red-eye effect</span> Photography appearance

The red-eye effect in photography is the common appearance of red pupils in color photographs of the eyes of humans and several other animals. It occurs when using a photographic flash that is very close to the camera lens in ambient low light.

<span class="mw-page-title-main">Retroreflector</span> Device to reflect radiation back to its source

A retroreflector is a device or surface that reflects radiation back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirror, which does this only if the mirror is exactly perpendicular to the wave front, having a zero angle of incidence. Being directed, the retroflector's reflection is brighter than that of a diffuse reflector. Corner reflectors and cat's eye reflectors are the most used kinds.

<span class="mw-page-title-main">Night vision</span> Ability to see in low light conditions

Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.

<span class="mw-page-title-main">Tapetum lucidum</span> Layer of eye tissue which aids in night vision

The tapetum lucidum is a layer of tissue in the eye of many vertebrates and some other animals. Lying immediately behind the retina, it is a retroreflector. It reflects visible light back through the retina, increasing the light available to the photoreceptors. The tapetum lucidum contributes to the superior night vision of some animals. Many of these animals are nocturnal, especially carnivores, while others are deep sea animals.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

<span class="mw-page-title-main">Thin-film optics</span> Branch of optics that deals with very thin structured layers of different materials

Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible light it is most often observed between 200 and 1000 nm of thickness. Layers at this scale can have remarkable reflective properties due to light wave interference and the difference in refractive index between the layers, the air, and the substrate. These effects alter the way the optic reflects and transmits light. This effect, known as thin-film interference, is observable in soap bubbles and oil slicks.

<span class="mw-page-title-main">Reflection (physics)</span> "Bouncing back" of waves at an interface

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected.

<span class="mw-page-title-main">Choroid</span> Vascular layer of the eye, containing connective tissue, and lying between the retina and the sclera

The choroid, also known as the choroidea or choroid coat, is a part of the uvea, the vascular layer of the eye, and contains connective tissues, and lies between the retina and the sclera. The human choroid is thickest at the far extreme rear of the eye, while in the outlying areas it narrows to 0.1 mm. The choroid provides oxygen and nourishment to the outer layers of the retina. Along with the ciliary body and iris, the choroid forms the uveal tract.

<span class="mw-page-title-main">Optical coating</span>

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Dielectric mirror</span> Mirror made of dielectric materials

A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser. Mirrors of this type are very common in optics experiments, due to improved techniques that allow inexpensive manufacture of high-quality mirrors. Examples of their applications include laser cavity end mirrors, hot and cold mirrors, thin-film beamsplitters, high damage threshold mirrors, and the coatings on modern mirrorshades and some binoculars roof prism systems.

<span class="mw-page-title-main">Distributed Bragg reflector</span> Structure used in waveguides

A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers. It is a structure formed from multiple layers of alternating materials with varying refractive index, or by periodic variation of some characteristic of a dielectric waveguide, resulting in periodic variation in the effective refractive index in the guide. Each layer boundary causes a partial reflection of an optical wave. For waves whose vacuum wavelength is close to four times the optical thickness of the layers, the many reflections combine with constructive interference, and the layers act as a high-quality reflector. The range of wavelengths that are reflected is called the photonic stopband. Within this range of wavelengths, light is "forbidden" to propagate in the structure.

<span class="mw-page-title-main">Chirped mirror</span> Dielectric mirror

A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack).

X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.

<span class="mw-page-title-main">Lycosoidea</span> Superfamily of spiders

Lycosoidea is a clade or superfamily of araneomorph spiders. The traditional circumscription was based on a feature of the eyes. The tapetum is a reflective layer at the back of the eye, thought to increase sensitivity in low light levels. Lycosoids were then defined by having a "grate-shaped" tapetum. Research from the late 1990s onwards suggests that this feature has evolved more than once, possibly as many as five times, so that the original Lycosoidea is paraphyletic. Studies published in 2014 and 2015 suggest that a smaller group of families does form a clade.

<span class="mw-page-title-main">Odd-eyed cat</span> Cat with eyes of different colours

An odd-eyed cat is a cat with one blue eye and one eye either green, yellow, or brown. This is a feline form of complete heterochromia, a condition that occurs in some other animals, including humans. There is also partial heterochromia, where there can be one blue eye and one eye that is partially blue and partially another color. The condition most commonly affects white cats, but may be found in a cat of any color, provided that it possesses the white spotting gene.

<span class="mw-page-title-main">Mammalian eye</span>

Mammals normally have a pair of eyes. Although mammalian vision is not so excellent as bird vision, it is at least dichromatic for most of mammalian species, with certain families possessing a trichromatic color perception.

<span class="mw-page-title-main">Thin-film interference</span> Optical phenomenon

Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, either enhancing or reducing the reflected light. When the thickness of the film is an odd multiple of one quarter-wavelength of the light on it, the reflected waves from both surfaces interfere to cancel each other. Since the wave cannot be reflected, it is completely transmitted instead. When the thickness is a multiple of a half-wavelength of the light, the two reflected waves reinforce each other, increasing the reflection and reducing the transmission. Thus when white light, which consists of a range of wavelengths, is incident on the film, certain wavelengths (colors) are intensified while others are attenuated. Thin-film interference explains the multiple colors seen in light reflected from soap bubbles and oil films on water. It is also the mechanism behind the action of antireflection coatings used on glasses and camera lenses. If the thickness of the film is much larger than the coherence length of the incident light, then the interference pattern will be washed out due to the linewidth of the light source.

<span class="mw-page-title-main">Structural coloration</span> Colour in living creatures caused by interference effects

Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination with pigments. For example, peacock tail feathers are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often iridescent.

<span class="mw-page-title-main">Spider vision</span> Eyes of spiders

The eyes of spiders vary significantly in their structure, arrangement, and function. They usually have eight, each being a simple eye with a single lens rather than multiple units as in the compound eyes of insects. The specific arrangement and structure of the eyes is one of the features used in the identification and classification of different species, genera, and families. Most haplogynes have six eyes, although some have eight (Plectreuridae), four or even two. In some cave species, there are no eyes at all. Sometimes one pair of eyes is better developed than the rest. Several families of hunting spiders, such as jumping spiders and wolf spiders, have fair to excellent vision. The main pair of eyes in jumping spiders even sees in colour.

References

  1. Land, M.F.(2000) Eyes with mirror optics. Journal of Optics A - Pure and Applied Optics 2 (6) R44-R50.
  2. Pedler, C. (1963). The fine structure of the tapetum cellulosum. Expl Eye Res. 2,189-19
  3. Coles, J.A. (1971) Some reflective properties of the tapetum lucidum of the cat's eye. J. Physiol.(Lond.), 212, 393-409
  4. Schultze, M. (1872). Uber das Tapetum in der Choriodes des Auges der Raubthiere. Sitzungsberichte der niederrheinischen Gesellschaft für Natur- und Heilkunde, 29, 215-216.
  5. Rayleigh, 3rd Baron (1887) XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. Series 5, vol.24 No.147, 145-159, doi : 10.1080/14786448708628074.
  6. Rayleigh, 3rd Baron (1917). On the reflection of light from a regularly stratified medium. Proc. R. Soc. A, 93. 565-577.
  7. Land, M.F. (1966) A multilayer interference reflector in the eye of the scallop. J. Exp. Biol. 45, 433-447.
  8. Huxley, A.F. (1968) A theoretical treatment of reflexion of light by multilayer structures. J. Exp. Biol. 48 (2) 227-245.
  9. Land, M.F. (1972) The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24, 75-106.