Anti-aliasing may refer to any of a number of techniques to combat the problems of aliasing in a sampled signal such as a digital image or digital audio recording.
Specific topics in anti-aliasing include:
The purpose of anti-aliasing is to reduce, if not eliminate, distracting aliasing artifacts in Computer Generated Imagery. Most aliasing artifacts, or jaggies, result from using only one sample point per pixel when computing 2D images. Images produced with single point sampling can achieve the fastest frame rate, at the expense of aliasing artifacts such as “stairsteps” and “narrow faces breakup”. These artifacts are more noticeable in real-time (RT) CGI applications, such as when simulating visual scenes for flight training or playing computer video games. In moving images, stairsteps result in “crawling“. Also, “narrow faces breakup” result in “faces popping in-and-out of scenes”. Most anti-aliasing solutions rely on multiple point sampling, or single point sampling followed by postprocessing, to reduce stairsteps and crawling. But they have limited success at correcting narrow faces breakup. Also, their performances depend on edge orientation.
A new approach, area-based anti-aliasing (ABAA), relies on subpixel area sampling. It is the fastest and produces the best static and moving images with anti-aliasing. Currently, there is no readily available product using ABAA. But simulations have shown that ABAA is the best anti-aliasing solution. [3] [4] [5]
Most approaches use sample points to detect when a portion of the triangle covers the pixel. With ABAA, the rendering operation is optimized with 2 types of edges: Horizontal edges (HE) and Vertical edges (VE). When edges traverse the image from pixel to pixel, the intersected pixels are easily identified. A pixel is partially covered by a triangle edge, when that edge intersects a midline inside of that pixel. At the same time, the partially covered area of that pixel, that is used for color mix, is readily available in 1 measurement (no lengthy computations). ABAA can be implemented directly using pixel covered areas, or the area can be mapped into 4, 8, 16 or 32 subpixel areas. The area-based approach solves several problems.
Two methods rely on multiple sample points anti-aliasing. It consists of computing multiple images, followed by averaging.
The super-sampling anti-aliasing (SSAA) approach has been used in non-real-time applications. In this approach, a 512x512 image is first computed at higher resolution, such as 2048x2048, for example. It is then reduced through averaging or filtering to produce a 512x512 image. It is computation intensive and cannot be used for RT CGI applications. Since there are no time constraints, large images can be computed offline using high-speed general-purpose.
With multisample anti-aliasing (MSAA), images are computed for 4 (or 8) subpixel sample points, followed by averaging. It is slow, since the frame rate is reduced by a factor of 4 (or 8). It works well for horizontal and vertical triangle edges. For other edge angles, the gaps between subpixels can cause narrow face breakups.
The position of the subpixel sample points for MSAA can be derived from solutions to the “Eight-queens puzzle”. The solutions to the 8-queens puzzle provide good results for near horizontal and vertical edges. But the anti-aliasing effectiveness is not as good for edges with angles in-between.
In order to improve the frame rate, several methods rely on single point sampling followed by image post-processing, with mixed results; among these are fast approximate anti-aliasing (FXAA), temporal anti-aliasing (TAA), and morphological antialiasing (MLAA).
ClearType is Microsoft's implementation of subpixel rendering technology in rendering text in a font system. ClearType attempts to improve the appearance of text on certain types of computer display screens by sacrificing color fidelity for additional intensity variation. This trade-off is asserted to work well on LCD flat panel monitors.
In computer graphics, rasterisation or rasterization is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image. The rasterized image may then be displayed on a computer display, video display or printer, or stored in a bitmap file format. Rasterization may refer to the technique of drawing 3D models, or to the conversion of 2D rendering primitives, such as polygons and line segments, into a rasterized format.
In digital signal processing, spatial anti-aliasing is a technique for minimizing the distortion artifacts (aliasing) when representing a high-resolution image at a lower resolution. Anti-aliasing is used in digital photography, computer graphics, digital audio, and many other applications.
The GeForce 3 series (NV20) is the third generation of Nvidia's GeForce line of graphics processing units (GPUs). Introduced in February 2001, it advanced the GeForce architecture by adding programmable pixel and vertex shaders, multisample anti-aliasing and improved the overall efficiency of the rendering process.
Subpixel rendering is a method used to increase the effective resolution of a color display device. It takes advantage of each pixel's composition of individually addressable red, green, and blue components adjacent on the display matrix, called subpixels, and uses them as rendering units instead of pixels.
In computer graphics, texture filtering or texture smoothing is the method used to determine the texture color for a texture mapped pixel, using the colors of nearby texels.
Font rasterization is the process of converting text from a vector description to a raster or bitmap description. This often involves some anti-aliasing on screen text to make it smoother and easier to read. It may also involve hinting—information embedded in the font data that optimizes rendering details for particular character sizes.
Cone tracing and beam tracing are a derivative of the ray tracing algorithm that replaces rays, which have no thickness, with thick rays.
In computer graphics and digital imaging, imagescaling refers to the resizing of a digital image. In video technology, the magnification of digital material is known as upscaling or resolution enhancement.
Demosaicing, also known as color reconstruction, is a digital image processing algorithm used to reconstruct a full color image from the incomplete color samples output from an image sensor overlaid with a color filter array (CFA) such as a Bayer filter. It is also known as CFA interpolation or debayering.
Supersampling or supersampling anti-aliasing (SSAA) is a spatial anti-aliasing method, i.e. a method used to remove aliasing from images rendered in computer games or other computer programs that generate imagery. Aliasing occurs because unlike real-world objects, which have continuous smooth curves and lines, a computer screen shows the viewer a large number of small squares. These pixels all have the same size, and each one has a single color. A line can only be shown as a collection of pixels, and therefore appears jagged unless it is perfectly horizontal or vertical. The aim of supersampling is to reduce this effect. Color samples are taken at several instances inside the pixel, and an average color value is calculated. This is achieved by rendering the image at a much higher resolution than the one being displayed, then shrinking it to the desired size, using the extra pixels for calculation. The result is a downsampled image with smoother transitions from one line of pixels to another along the edges of objects. The number of samples determines the quality of the output.
Multisample anti-aliasing (MSAA) is a type of spatial anti-aliasing, a technique used in computer graphics to remove jaggies.
Temporal anti-aliasing (TAA) is a spatial anti-aliasing technique for computer-generated video that combines information from past frames and the current frame to remove jaggies in the current frame. In TAA, each pixel is sampled once per frame but in each frame the sample is at a different location within the frame. Pixels sampled in past frames are blended with pixels sampled in the current frame to produce an anti-aliased image. Although this method makes TAA achieve a result comparable to supersampling, the technique inevitably causes ghosting and blurriness to the image.
In the field of 3D computer graphics, deferred shading is a screen-space shading technique that is performed on a second rendering pass, after the vertex and pixel shaders are rendered. It was first suggested by Michael Deering in 1988.
The term post-processing is used in the video and film industry for quality-improvement image processing methods used in video playback devices, such as stand-alone DVD-Video players; video playing software; and transcoding software. It is also commonly used in real-time 3D rendering to add additional effects.
Morphological antialiasing (MLAA) is a technique for minimizing the distortion artifacts known as aliasing when representing a high-resolution image at a lower resolution.
Fast approximate anti-aliasing (FXAA) is a screen-space anti-aliasing algorithm created by Timothy Lottes at Nvidia.
This is a glossary of terms relating to computer graphics.
Deep learning super sampling (DLSS) is a family of real-time deep learning image enhancement and upscaling technologies developed by Nvidia that are available in a number of video games. The goal of these technologies is to allow the majority of the graphics pipeline to run at a lower resolution for increased performance, and then infer a higher resolution image from this that approximates the same level of detail as if the image had been rendered at this higher resolution. This allows for higher graphical settings and/or frame rates for a given output resolution, depending on user preference.
Deep learning anti-aliasing (DLAA) is a form of spatial anti-aliasing created by Nvidia. DLAA depends on and requires Tensor Cores available in Nvidia RTX cards.