Aortic nerve

Last updated
Aortic nerve
Details
From vagus nerve
Innervates baroreceptors and chemoreceptors of the aortic arch
Identifiers
Latin Nervus aortae
Anatomical terms of neuroanatomy

The aortic nerve, also known as the aortic depressor nerve, is a branch of the vagus nerve. It supplies autonomic afferent nerve fibers to the peripheral baroreceptors and chemoreceptors found in the aortic arch.

Contents

Structure

The aortic nerve is an autonomic afferent nerve, [1] and runs from the peripheral baroreceptors and chemoreceptors found in the aortic arch and the bifurcation of the right brachiocephalic trunk. [2] [3] It joins the vagus nerve. [2] [3] This allows for impulses to reach the solitary tract of the brainstem. [2]

Function

The aortic nerve is part of the nerve pathway that allows for afferent impulses to be sent from the aortic arch to the medulla oblongata for control of the circulatory system. [2]

History

The aortic nerve was allegedly discovered by Jewish Russian-French physiologist Elias von Cyon and German physician Carl Ludwig. [4]

Related Research Articles

<span class="mw-page-title-main">Vagus nerve</span> Cranial nerve X, for visceral innervation

The vagus nerve, also known as the tenth cranial nerve, cranial nerve X, or simply CN X, is a cranial nerve that carries sensory fibers that create a pathway that interfaces with the parasympathetic control of the heart, lungs, and digestive tract. It comprises two nerves—the left and right vagus nerves—but they are typically referred to collectively as a single subsystem. The vagus is the longest nerve of the autonomic nervous system in the human body and comprises both sensory and motor fibers. The sensory fibers originate from neurons of the nodose ganglion, whereas the motor fibers come from neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus. The vagus was also historically called the pneumogastric nerve.

<span class="mw-page-title-main">Medulla oblongata</span> Structure of the brain stem

The medulla oblongata or simply medulla is a long stem-like structure which makes up the lower part of the brainstem. It is anterior and partially inferior to the cerebellum. It is a cone-shaped neuronal mass responsible for autonomic (involuntary) functions, ranging from vomiting to sneezing. The medulla contains the cardiac, respiratory, vomiting and vasomotor centers, and therefore deals with the autonomic functions of breathing, heart rate and blood pressure as well as the sleep–wake cycle.

<span class="mw-page-title-main">Glossopharyngeal nerve</span> Cranial nerve IX, for the tongue and pharynx

The glossopharyngeal nerve, also known as the ninth cranial nerve, cranial nerve IX, or simply CN IX, is a cranial nerve that exits the brainstem from the sides of the upper medulla, just anterior to the vagus nerve. Being a mixed nerve (sensorimotor), it carries afferent sensory and efferent motor information. The motor division of the glossopharyngeal nerve is derived from the basal plate of the embryonic medulla oblongata, whereas the sensory division originates from the cranial neural crest.

<span class="mw-page-title-main">Subclavian artery</span> Major arteries of the upper thorax, below the clavicle

In human anatomy, the subclavian arteries are paired major arteries of the upper thorax, below the clavicle. They receive blood from the aortic arch. The left subclavian artery supplies blood to the left arm and the right subclavian artery supplies blood to the right arm, with some branches supplying the head and thorax. On the left side of the body, the subclavian comes directly off the aortic arch, while on the right side it arises from the relatively short brachiocephalic artery when it bifurcates into the subclavian and the right common carotid artery.

<span class="mw-page-title-main">Solitary nucleus</span> Sensory nuclei in medulla oblongata

The solitary nucleus is a series of sensory nuclei forming a vertical column of grey matter in the medulla oblongata of the brainstem. It receives general visceral and/or special visceral inputs from the facial nerve, glossopharyngeal nerve and vagus nerve ; it receives and relays stimuli related to taste and visceral sensation. It sends outputs to various parts of the brain. Neuron cell bodies of the SN are roughly somatotopically arranged along its length according to function.

The cardiovascular centre is a part of the human brain which regulates heart rate through the nervous and endocrine systems. It is considered one of the vital centres of the medulla oblongata.

<span class="mw-page-title-main">Baroreflex</span> Homeostatic mechanism in the body

The baroreflex or baroreceptor reflex is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure causes the heart rate to decrease. Decreased blood pressure decreases baroreflex activation and causes heart rate to increase and to restore blood pressure levels. Their function is to sense pressure changes by responding to change in the tension of the arterial wall The baroreflex can begin to act in less than the duration of a cardiac cycle and thus baroreflex adjustments are key factors in dealing with postural hypotension, the tendency for blood pressure to decrease on standing due to gravity.

<span class="mw-page-title-main">Carotid sinus</span> Dilated area near internal carotid artery above bifurcation

In human anatomy, the carotid sinus is a dilated area at the base of the internal carotid artery just superior to the bifurcation of the internal carotid and external carotid at the level of the superior border of thyroid cartilage. The carotid sinus extends from the bifurcation to the "true" internal carotid artery. The carotid sinus is sensitive to pressure changes in the arterial blood at this level. It is the major baroreception site in humans and most mammals.

<span class="mw-page-title-main">Aortic body</span>

The aortic bodies are one of several small clusters of peripheral chemoreceptors located along the aortic arch. They are important in measuring partial pressures of oxygen and carbon dioxide in the blood, and blood pH.

<span class="mw-page-title-main">Internal thoracic artery</span> Artery of the thorax

In human anatomy, the internal thoracic artery (ITA), previously commonly known as the internal mammary artery, is an artery that supplies the anterior chest wall and the breasts. It is a paired artery, with one running along each side of the sternum, to continue after its bifurcation as the superior epigastric and musculophrenic arteries.

<span class="mw-page-title-main">Facial artery</span>

The facial artery is a branch of the external carotid artery that supplies structures of the superficial face.

<span class="mw-page-title-main">Cardiac plexus</span> Bunch of vagus nerve branches that support the hearts functions

The cardiac plexus is a plexus of nerves situated at the base of the heart that innervates the heart.

<span class="mw-page-title-main">Posterior ethmoidal nerve</span> Nerve of the orbit around the eye

The posterior ethmoidal nerve is a nerve of the head. It is a branch of the nasociliary nerve (itself a branch of the ophthalmic nerve (CN V1)). It provides sensory innervation to the sphenoid sinus and ethmoid sinus, and part of the dura mater in the anterior cranial fossa.

<span class="mw-page-title-main">Inferior ganglion of vagus nerve</span> Ganglion of the peripheral nervous system

The inferior ganglion of the vagus nerve is one of the two sensory ganglia of each vagus nerve. It contains neuron cell bodies of general visceral efferent fibers and special visceral efferent fibers. It is situated within the jugular fossa just below the skull. It is situated just below the superior ganglion of vagus nerve.

<span class="mw-page-title-main">Esophageal plexus</span>

The esophageal plexus is formed by nerve fibers from two sources, branches of the vagus nerve, and visceral branches of the sympathetic trunk. The esophageal plexus and the cardiac plexus contain the same types of fibers and are both considered thoracic autonomic plexus.

<span class="mw-page-title-main">Endoneurium</span> Connective tissue layer around myelinated nerve fibers in peripheral nervous system

The endoneurium is a layer of delicate connective tissue around the myelin sheath of each myelinated nerve fiber in the peripheral nervous system. Its component cells are called endoneurial cells. The endoneuria with their enclosed nerve fibers are bundled into groups called nerve fascicles, each fascicle within its own protective sheath called a perineurium. In sufficiently large nerves multiple fascicles, each with its blood supply and fatty tissue, may be bundled within yet another sheath, the epineurium.

<span class="mw-page-title-main">Anterior auricular muscle</span> Muscle connectingthe epicranial aponeurosis to the helix of the ear

The anterior auricular muscle, the smallest of the three auricular muscles, is thin and fan-shaped, and its fibers are pale and indistinct. It arises from the lateral edge of the epicranial aponeurosis, and its fibers converge to be inserted into a projection on the front of the helix.

The Bezold–Jarisch reflex involves a variety of cardiovascular and neurological processes which cause hypopnea, hypotension and bradycardia in response to noxious stimuli detected in the cardiac ventricles. The reflex is named after Albert von Bezold and Adolf Jarisch Junior. The significance of the discovery is that it was the first recognition of a chemical (non-mechanical) reflex.

The vasomotor center (VMC) is a portion of the medulla oblongata. Together with the cardiovascular center and respiratory center, it regulates blood pressure. It also has a more minor role in other homeostatic processes. Upon increase in carbon dioxide level at central chemoreceptors, it stimulates the sympathetic system to constrict vessels. This is opposite to carbon dioxide in tissues causing vasodilatation, especially in the brain. Cranial nerves IX and X both feed into the vasomotor centre and are themselves involved in the regulation of blood pressure.

A vagal maneuver is an action used to stimulate the parasympathetic nervous system by activating the vagus nerve. The vagus nerve is the longest nerve of the autonomic nervous system and helps regulate many critical aspects of human physiology, including heart rate, blood pressure, sweating, and digestion through the release of acetylcholine. Common maneuvers that activate the vagus nerve include the Valsalva maneuver and carotid sinus massage, which can serve diagnostic or therapeutic functions.

References

  1. Uchida, Y (1975-04-01). "Afferent aortic nerve fibers with their pathways in cardiac sympathetic nerves". American Journal of Physiology. Legacy Content. 228 (4): 990–995. doi:10.1152/ajplegacy.1975.228.4.990. ISSN   0002-9513. PMID   165728.
  2. 1 2 3 4 Barral, Jean-Pierre; Croibier, Alain (2011-01-01), Barral, Jean-Pierre; Croibier, Alain (eds.), "3 - Homeostasis of the cardiovascular system", Visceral Vascular Manipulations, Oxford: Churchill Livingstone, pp. 46–60, doi:10.1016/b978-0-7020-4351-2.00003-x, ISBN   978-0-7020-4351-2 , retrieved 2020-11-16
  3. 1 2 Prabhakar, Nanduri R. (2016-01-01), Zufall, Frank; Munger, Steven D. (eds.), "Chapter 18 - O2 and CO2 Detection by the Carotid and Aortic Bodies", Chemosensory Transduction, Academic Press, pp. 321–338, doi:10.1016/b978-0-12-801694-7.00018-4, ISBN   978-0-12-801694-7 , retrieved 2020-12-29
  4. King, A. S. (1956-09-01). "An Historical Note on the Discovery of the Depressor Nerve". British Veterinary Journal. 112 (9): 353–356. doi:10.1016/S0007-1935(17)46453-0. ISSN   0007-1935.