Apogee kick motor

Last updated
A Waxwing apogee kick motor. Waxwing rocket motor science museum 2012.JPG
A Waxwing apogee kick motor.
A solid-propellant apogee motor for the NATO III communications satellite (SATCOM) is being put into a 110,000-foot altitude test. The engine also underwent the impact, vibration and acceleration (IVA) test. Arnold Engineering Development Complex, Arnold Air Force Station. 1 April 1974. Solid-propellant apogee motor for the NATO III communications satellite.jpg
A solid-propellant apogee motor for the NATO III communications satellite (SATCOM) is being put into a 110,000-foot altitude test. The engine also underwent the impact, vibration and acceleration (IVA) test. Arnold Engineering Development Complex, Arnold Air Force Station. 1 April 1974.

An apogee kick motor (AKM) is a rocket motor that is regularly employed on artificial satellites to provide the final impulse to change the trajectory from the transfer orbit into its final orbit (most commonly circular). For a satellite launched from the Earth, the rocket firing is done at the highest point of the transfer orbit, known as the apogee.

Contents

An apogee kick motor is used, for example, for satellites launched into a geostationary orbit. As the vast majority of geostationary satellite launches are carried out from spaceports at a significant distance away from Earth's equator, the carrier rocket often only launches the satellite into an orbit with a non-zero inclination approximately equal to the latitude of the launch site. This orbit is commonly known as a "geostationary transfer orbit" or a "geosynchronous transfer orbit". The satellite must then provide thrust to bring forth the needed delta v to reach a geostationary orbit. This is typically done with a fixed onboard apogee kick motor. [1] When the satellite reaches its orbit's apogee position, the AKM is ignited, transforming the elliptical orbit into a circular orbit, while at the same time bringing the inclination to around zero degrees, thereby accomplishing the insertion into a geostationary orbit. This process is called an "apogee kick". [1]

More generally, firing a rocket engine to place a vehicle into the desired final orbit from a transfer orbit is labelled an "orbital insertion burn" or, if the desired orbit is circular, a circularization burn. For orbits around bodies other than Earth, it may be referred to as an apoapsis burn.

The amount of fuel carried on board a satellite directly affects its lifetime, therefore it is desirable to make the apogee kick maneuver as efficient as possible. The mass of most geostationary satellites at the beginning of their operational life in geostationary orbit is typically about half that when they separated from their vehicle in geostationary transfer orbit, with the other half having been fuel expended in the apogee kick maneuver. [2]

Use on interplanetary missions

A Star 48 kick motor was used to launch the New Horizons spacecraft towards Pluto. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Energia (rocket)</span> Soviet launch vehicle

Energia was a 1980s super-heavy lift launch vehicle. It was designed by NPO Energia of the Soviet Union as part of the Buran program for a variety of payloads including the Buran spacecraft. Control system main developer enterprise was the Khartron NPO "Electropribor". The Energia used four strap-on boosters each powered by a four-chamber RD-170 engine burning kerosene/LOX, and a central core stage with four single-chamber RD-0120 (11D122) engines fueled by liquid hydrogen/LOX.

<span class="mw-page-title-main">Geosynchronous orbit</span> Orbit keeping the satellite at a fixed longitude above the equator

A geosynchronous orbit is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds. The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi).

<span class="mw-page-title-main">Trans-lunar injection</span> Propulsive maneuver used to arrive at the Moon

A trans-lunar injection (TLI) is a propulsive maneuver, which is used to send a spacecraft to the Moon. Typical lunar transfer trajectories approximate Hohmann transfers, although low-energy transfers have also been used in some cases, as with the Hiten probe. For short duration missions without significant perturbations from sources outside the Earth-Moon system, a fast Hohmann transfer is typically more practical.

<span class="mw-page-title-main">Hohmann transfer orbit</span> Transfer manoeuvre between two orbits

In astronautics, the Hohmann transfer orbit is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.

<span class="mw-page-title-main">Geostationary transfer orbit</span> Transfer orbit used to reach geosynchronous or geostationary orbit

In space mission design, a geostationary transfer orbit (GTO) or geosynchronous transfer orbit is a highly elliptical type of geocentric orbit, usually with a perigee as low as low Earth orbit (LEO) and an apogee as high as geostationary orbit (GEO). Satellites that are destined for geosynchronous orbit (GSO) or GEO are often put into a GTO as an intermediate step for reaching their final orbit. Manufacturers of launch vehicles often advertise the amount of payload the vehicle can put into GTO.

Delta-v, symbolized as and pronounced, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.

Delta-<i>v</i> budget Estimate of total change in velocity of a space mission

In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.

In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).

In spaceflight an orbit insertion is an orbital maneuver which adjusts a spacecraft’s trajectory, allowing entry into an orbit around a planet, moon, or other celestial body. An orbit insertion maneuver involves either deceleration from a speed in excess of the respective body's escape velocity, or acceleration to it from a lower speed.

GSAT-1 was an experimental communications satellite launched aboard the maiden flight of the GSLV rocket. The spacecraft was equipped with instrumentation to test Pulse-code modulation (PCM) transmitting on S-band frequencies and transponders operating in the C-band. The spacecraft was unable to complete its mission after a launch failure left it in a lower than planned orbit and propulsion issues prevented the satellite from correcting this via its own maneuvering system.

A supersynchronous orbit is either an orbit with a period greater than that of a synchronous orbit, or just an orbit whose major axis is larger than that of a synchronous orbit. A synchronous orbit has a period equal to the rotational period of the body which contains the barycenter of the orbit.

<span class="mw-page-title-main">Satellite ground track</span> Path on the surface of the Earth or another body directly below an aircraft or satellite

A satellite ground track or satellite ground trace is the path on the surface of a planet directly below a satellite's trajectory. It is also known as a suborbital track or subsatellite track, and is the vertical projection of the satellite's orbit onto the surface of the Earth . A satellite ground track may be thought of as a path along the Earth's surface that traces the movement of an imaginary line between the satellite and the center of the Earth. In other words, the ground track is the set of points at which the satellite will pass directly overhead, or cross the zenith, in the frame of reference of a ground observer.

A parking orbit is a temporary orbit used during the launch of a spacecraft. A launch vehicle follows a trajectory to the parking orbit, then coasts for a while, then engines fire again to enter the final desired trajectory.

The Intelsat VI series of satellites were the 8th generation of geostationary communications satellites for the Intelsat Corporation. Designed and built by Hughes Aircraft Company (HAC) in 1983-1991, there were five VI-series satellites built: 601, 602, 603, 604, and 605.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

The Star is a family of US solid-propellant rocket motors originally developed by Thiokol and used by many space propulsion and launch vehicle stages. They are used almost exclusively as an upper stage, often as an apogee kick motor. The number designations refer to the approximate diameter of the fuel casing in inches.

<span class="mw-page-title-main">Liquid apogee engine</span>

A liquid apogee engine (LAE), or apogee engine, refers to a type of chemical rocket engine typically used as the main engine in a spacecraft.

<span class="mw-page-title-main">GSAT-6A</span> Indian telecommunications satellite

GSAT-6A was a communication satellite launched by the Indian Space Research Organisation (ISRO). It featured a 6-metre (20 ft) unfurlable S-band antenna similar to the one used on GSAT-6. Around 17 minutes after lift-off, the three stage GSLV Mk.II rocket flying on GSLV F08 mission successfully injected the satellite into a geosynchronous transfer orbit. Due to power failure during its orbit raising burns the communication was lost with GSAT-6A before it could reach its final circular geostationary orbit (GSO).

<span class="mw-page-title-main">Integrated Apogee Boost Stage</span> American rocket stage

The Integrated Apogee Boost Stage was an American rocket stage used for the launch of Defense Satellite Communications System III satellites to geostationary orbit when using a launch vehicle without an upper stage capable of delivering them there directly. Earlier DSCS III satellites had launched on the Titan 34D and Space Shuttle Atlantis, which were capable of delivering them directly to geostationary orbit - as such, the satellites were not capable of moving from geostationary transfer orbit to geostationary orbit themselves. Because of this, launch of these satellites on the Atlas II and Delta IV families required an apogee kick stage - the IABS - to be added to the satellite. The IABS was developed by GE Astro Space, who also manufactured the DSCS III satellites it was designed for.

References

  1. 1 2 Jonathan McDowell, "Kick In the Apogee: 40 years of upper stage applications for solid rocket motors, 1957–1997", 33rd AIAA Joint Propulsion Conference, July 4, 1997. abstract. Retrieved 18 July 2017.
  2. Darling, David (2003). The Complete Book of Spaceflight . John Wiley & Sons Inc. pp.  22, 159. ISBN   0-471-05649-9.
  3. "New Horizons Launch Preparations Move Ahead". The Johns Hopkins University Applied Physics Laboratory. 18 November 2005.