Arachnids in medicine

Last updated

Like plants and insects, arachnids have been used for thousands of years in traditional medical practices. Recent scientific research in natural bioactive factors has increased, leading to a renewed interest in venom components in many animals. In 1993 Margatoxin was synthesized from the venom of the Centruroides margaritatus the Central American bark scorpion. It is a peptide that selectively inhibits voltage-dependent potassium channels. Patented by Merck, it can potentially prevent neointimal hyperplasia, a common cause of bypass graft failure. [1]

Contents

In addition to medical uses of arachnid defense compounds, a great amount of research has recently been directed toward synthesizing and using spider silk as a scaffolding for ligament generation. Spider silk is ideal for synthesizing medical skin grafts or ligament implants because it is one of the strongest known natural fibers and triggers little immune response in animals. Spider silk may also make fine sutures for stitching nerves or eyes to heal with little scarring. Medical uses of spider silk have been introduced previously. Spider silks have been used for centuries to fight infection and heal wounds. Efforts to produce industrial quantities and qualities of spider silk in transgenic goat milk are underway. [2] [3]

Psychoactive scorpions

Recent news reports [4] claim that use of scorpions for psychoactive purposes is gaining in popularity in Asia. Heroin addicts in Afghanistan are purported to smoke dried scorpions or use scorpion stings to get high when heroin is unavailable. Using scorpions as a psychoactive drug reportedly gives an instant high as strong or stronger than heroin. However, there is little information on the long-term effects of using scorpion toxins. [5] The 'scorpion sting craze' has also increased in India with decreasing availability of other drugs and alcohol available to youth. [6] Young people are reportedly flocking to highway sides where they can purchase scorpion stings that after several minutes of intense pain, supposedly produce a six- to eight-hour feeling of wellbeing. [7]

Tick saliva

Modern medical research has only recently begun investigating the drug development potential of blood-feeding insect saliva. These compounds in the saliva of blood-feeding insects can increase the ease of blood feeding by preventing the coagulation of platelets around the wound and providing protection against the host's immune response. Over 1280 different protein families have been associated with the saliva of blood-feeding organisms. [8] This diverse range of compounds may include inhibitors of platelet aggregation, ADP, arachidonic acid, thrombin, and PAF; anticoagulants; vasodilators and vasoconstrictors; antihistamines; anaesthetics, and other functional substances. [9] [10]

Currently, some preliminary progress has been made with the investigation of the therapeutic properties of tick anticoagulant peptide (TAP) and Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis . [11] Additionally, Ixolaris, a tissue factor inhibitor, has been shown to block primary tumor growth and angiogenesis in a glioblastoma model. [12] No modern medicines developed from the saliva of blood-sucking insects are currently on the market. [9]

Related Research Articles

<span class="mw-page-title-main">Arachnid</span> Class of arthropods

Arachnida is a class of joint-legged invertebrate animals (arthropods), in the subphylum Chelicerata. Arachnida includes, among others, spiders, scorpions, ticks, mites, pseudoscorpions, harvestmen, camel spiders, whip spiders and vinegaroons.

<span class="mw-page-title-main">Saliva</span> Bodily fluid secreted by salivary glands

Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells, enzymes, antimicrobial agents.

<span class="mw-page-title-main">Salivary gland</span> Exocrine glands that produce saliva through a system of ducts

The salivary glands in many vertebrates including mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands, as well as hundreds of minor salivary glands. Salivary glands can be classified as serous, mucous, or seromucous (mixed).

<i>Hirudo medicinalis</i> Species of annelid worm

Hirudo medicinalis, the European medicinal leech, is one of several species of leeches used as "medicinal leeches".

<span class="mw-page-title-main">Antithrombin</span> Mammalian protein found in Homo sapiens

Antithrombin (AT) is a small glycoprotein that inactivates several enzymes of the coagulation system. It is a 464-amino-acid protein produced by the liver. It contains three disulfide bonds and a total of four possible glycosylation sites. α-Antithrombin is the dominant form of antithrombin found in blood plasma and has an oligosaccharide occupying each of its four glycosylation sites. A single glycosylation site remains consistently un-occupied in the minor form of antithrombin, β-antithrombin. Its activity is increased manyfold by the anticoagulant drug heparin, which enhances the binding of antithrombin to factor IIa (thrombin) and factor Xa.

<span class="mw-page-title-main">Protein S</span>

Protein S is a vitamin K-dependent plasma glycoprotein synthesized in the liver. In the circulation, Protein S exists in two forms: a free form and a complex form bound to complement protein C4b-binding protein (C4BP). In humans, protein S is encoded by the PROS1 gene. Protein S plays a role in coagulation.

<span class="mw-page-title-main">Warfarin necrosis</span> Medical condition

Warfarin-induced skin necrosis is a condition in which skin and subcutaneous tissue necrosis occurs due to acquired protein C deficiency following treatment with anti-vitamin K anticoagulants.

Danaparoid sodium (Orgaran) is an anticoagulant with an antithrombotic action due to inhibition of thrombin generation (TGI) by two mechanisms: indirect inactivation of Factor Xa via AT and direct inhibition of thrombin activation of Factor IX. It also possesses a minor anti-thrombin activity, mediated equally via AT and Heparin Co-factor II producing a ratio of anti-Xa:IIa activity >22. [Meuleman DG. Haemostasis 1992;22:58-65 and Ofosu FA Haemostasis 1992;22:66-72]

<span class="mw-page-title-main">Heparin cofactor II</span> Protein-coding gene in the species Homo sapiens

Heparin cofactor II (HCII), a protein encoded by the SERPIND1 gene, is a coagulation factor that inhibits IIa, and is a cofactor for heparin and dermatan sulfate.

Lepirudin is an anticoagulant that functions as a direct thrombin inhibitor.

<span class="mw-page-title-main">Apolipoprotein H</span> Protein-coding gene in humans

β2-glycoprotein 1, also known as beta-2 glycoprotein 1 and Apolipoprotein H (Apo-H), is a 38 kDa multifunctional plasma protein that in humans is encoded by the APOH gene. One of its functions is to bind cardiolipin. When bound, the structure of cardiolipin and β2-GP1 both undergo large changes in structure. Within the structure of Apo-H is a stretch of positively charged amino acids, Lys-Asn-Lys-Glu-Lys-Lys, are involved in phospholipid binding.

Direct factor Xa inhibitors (xabans) are anticoagulants, used to both treat and prevent blood clots in veins, and prevent stroke and embolism in people with atrial fibrillation (AF).

Thromboelastometry (TEM), previously named rotational thromboelastography (ROTEG) or rotational thromboelastometry (ROTEM), is an established viscoelastic method for hemostasis testing in whole blood. It is a modification of traditional thromboelastography (TEG).

<span class="mw-page-title-main">Arthropod bites and stings</span> Medical condition

Many species of arthropods can bite or sting human beings. These bites and stings generally occur as a defense mechanism or during normal arthropod feeding. While most cases cause self-limited irritation, medically relevant complications include envenomation, allergic reactions, and transmission of vector-borne diseases.

<span class="mw-page-title-main">Hematophagy</span> Ecological niche involving feeding on blood

Hematophagy is the practice by certain animals of feeding on blood. Since blood is a fluid tissue rich in nutritious proteins and lipids that can be taken without great effort, hematophagy is a preferred form of feeding for many small animals, such as worms and arthropods. Some intestinal nematodes, such as Ancylostomatids, feed on blood extracted from the capillaries of the gut, and about 75 percent of all species of leeches are hematophagous. The spider Evarcha culicivora feeds indirectly on vertebrate blood by specializing on blood-filled female mosquitoes as their preferred prey. Some fish, such as lampreys and candirus; mammals, especially vampire bats; and birds, including the vampire finch, Hood mockingbird, Tristan thrush, and oxpeckers, also practise hematophagy.

<span class="mw-page-title-main">Human interactions with insects</span>

Human interactions with insects include both a wide variety of uses, whether practical such as for food, textiles, and dyestuffs, or symbolic, as in art, music, and literature, and negative interactions including damage to crops and extensive efforts to control insect pests.

Thrombodynamics test is a method for blood coagulation monitoring and anticoagulant control. This test is based on imitation of coagulation processes occurring in vivo, is sensitive both to pro- and anticoagulant changes in the hemostatic balance. Highly sensitive to thrombosis.

<span class="mw-page-title-main">Ciraparantag</span> Chemical compound

Ciraparantag (aripazine) is a drug under investigation as an antidote for a number of anticoagulant drugs, including factor Xa inhibitors, dabigatran, and heparins.

<span class="mw-page-title-main">Insects in medicine</span>

Insects have long been used in medicine, both traditional and modern, sometimes with little evidence of their effectiveness.

Acquired haemophilia A (AHA) is a rare but potentially life-threatening bleeding disorder characterized by autoantibodies directed against coagulation factor VIII. These autoantibodies constitute the most common spontaneous inhibitor to any coagulation factor and may induce spontaneous bleeding in patients with no previous history of a bleeding disorder.

References

  1. Costa-Neto, E. M. (2005). "Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources". An. Acad. Bras. Ciênc. 77 (1): 33–43. doi: 10.1590/s0001-37652005000100004 . PMID   15692677.
  2. "Artificial Skin Spun from Spider Silk | Golden Orb-Weaver Spiders | Skin Grafts & Medical Technologies". livescience.com. 8 August 2011. Retrieved 2016-04-01.
  3. Vendrely, C.; Scheibel, T. (2007). "Biotechnological Production of Spider-Silk Proteins Enables New Applications". Macromolecular Bioscience. 7 (4): 401–409. doi:10.1002/mabi.200600255. PMID   17429812.
  4. "Smoking Scorpions For a New High". Wired. 11 November 2001.
  5. "Most Frequently Accessed Articles, September 2004-September 2005*". Academic Medicine. 81 (1): 7. January 2006. doi: 10.1097/00001888-200601000-00004 . ISSN   1040-2446. S2CID   220575893.
  6. "iSARMS.com - Review Selective Androgen Receptor Modulators". treatmentsolutionsnetwork.com. Archived from the original on 2015-04-18. Retrieved 2016-04-01.
  7. "Drugs in Afghanistan: opium, outlaws and scorpion tales." David Macdonald. Pluto. 2007
  8. Ribeiro, J.M.C., Arca, B., 2009. From sialomes to the sialoverse: an insight into a salivary potion of blood-feeding insects. Adv. Insect Physiol. 37, 59e118.
  9. 1 2 N.A. Ratcliffe et al. Insect Biochemistry and Molecular Biology 41 (2011) 747e769
  10. Francischetti, I.M.B., Mather, T.N., Ribeiro, J.M.C., 2005. Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb. Haemost. 94, 167e174.
  11. Maritz-Olivier, C., Stutzer, C., Jongejan, F., et al., 2007. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol. 23, 397e407.
  12. Carneiro-Lobo, T.C., Konig, S., Machado, D.E., 2009. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 7, 1855e1864.