Architectural light shelf

Last updated
Curtain wall and light shelf, in the second-floor children's library of Bronx Library Center Bronx Library Center second floor interior.jpg
Curtain wall and light shelf, in the second-floor children's library of Bronx Library Center

A light shelf is a horizontal surface that reflects daylight deep into a building. Light shelves are placed above eye-level and have high-reflectance upper surfaces, which reflect daylight onto the ceiling and deeper into the space.

Contents

Light shelves are typically used in high-rise and low-rise office buildings, as well as institutional buildings. This design is generally used on the equator-facing side of the building, which is where maximum sunlight is found, and as a result is most effective. Not only do light shelves allow light to penetrate through the building, they are also designed to shade near the windows, due to the overhang of the shelf, and help reduce window glare. Exterior shelves are generally more effective shading devices than interior shelves. A combination of exterior and interior shelves will work best in providing an even illumination gradient.

Benefits

Architectural light shelves have been proven to reduce the need for artificial lighting in buildings. Since they can reflect light deeper into a space, the use of incandescent and fluorescent lighting can be reduced or eliminated, depending on the space. Light shelves make it possible for daylight to penetrate the space up to 2.5 times the distance between the floor and the top of the window. Today, advanced light shelf technology makes it possible to increase the distance up to 4 times. In spaces such as classrooms and offices, light shelves have been proven to increase occupant comfort and productivity. Furthermore, incorporating light shelves in a building design is admissible for the LEED point system, falling under the “Indoor Environment Quality: Daylight & Views” category.

Limitations

Light shelves may not be suitable for all climates. They are generally used in mild climates and not in tropical or desert climates due to the intense solar heat gain. [1] These hot climates, compared to mild climates, require very small window openings to reduce the amount of heat infiltration.

The fact that light shelves extend a fair distance into a room may result in interference with sprinkler systems. In Canada, they cannot exceed 1200 mm (4 ft.) in width if sprinklers are present or the design will require integration with sprinkler system to cover the floor area under the light shelf. They also require a higher than average floor-to-ceiling height in order for them to be effective, or daylight may be inadvertently redirected into occupants' eyes.

The distance into a space that light is cast is variable depending on both the time of day and the time of year.

Light shelves also increase maintenance requirements and window coverings must be coordinated with light shelf design.

Alternatives

Alternatives to light shelves for window daylighting include blinds and louver systems, both of which can be interior or exterior.

Blinds reduce solar gain, but do little to redirect light into the interior space.

Exterior louver systems often rely on adjustments from either complex servo motors or building occupants throughout the day to operate well. Both of these systems can be unreliable at times, reducing the overall benefit of having a daylighting system.

See also

Related Research Articles

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Window covering</span> Material used to cover a window

Window coverings are considered any type of materials used to cover a window to manage sunlight, privacy, additional weatherproofing or for purely decorative purposes.

<span class="mw-page-title-main">Curtain wall (architecture)</span> Outer non-structural walls of a building

A curtain wall is an exterior covering of a building in which the outer walls are non-structural, instead serving to protect the interior of the building from the elements. Because the curtain wall façade carries no structural load beyond its own dead load weight, it can be made of lightweight materials. The wall transfers lateral wind loads upon it to the main building structure through connections at floors or columns of the building.

<span class="mw-page-title-main">Louver</span> Window protection with horizontal angled slats

A louver or louvre is a window blind or shutter with horizontal slats that are angled to admit light and air, but to keep out rain and direct sunshine. The angle of the slats may be adjustable, usually in blinds and windows, or fixed.

<span class="mw-page-title-main">Architectural lighting design</span> Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

<span class="mw-page-title-main">Dropped ceiling</span> Secondary ceiling hung below a main ceiling

A dropped ceiling is a secondary ceiling, hung below the main (structural) ceiling. It may also be referred to as a drop ceiling, T-bar ceiling, false ceiling, suspended ceiling, grid ceiling, drop in ceiling, drop out ceiling, or ceiling tiles and is a staple of modern construction and architecture in both residential and commercial applications.

<span class="mw-page-title-main">Light tube</span> Architectural element

Light tubes are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.

<span class="mw-page-title-main">Council House 2</span> Office in Melbourne, Australia

Council House 2 (also known as CH2), is an office building located at 240 Little Collins Street in the Melbourne central business district, Australia. It is used by the City of Melbourne council, and in April 2005, became the first purpose-built office building in Australia to achieve a maximum Six Green Star rating, certified by the Green Building Council of Australia. CH2 officially opened in August 2006.

Daylight harvesting systems use daylight to offset the amount of electric lighting needed to properly light a space, in order to reduce energy consumption. This is accomplished using lighting control systems that are able to dim or switch electric lighting in response to changing daylight availability. The term Daylight Harvesting has become the standard in the fields of lighting, sustainable architecture, and active daylighting industries.

<span class="mw-page-title-main">Anidolic lighting</span> Indoor lighting

Anidolic lighting systems use anidolic optical components to light rooms. Light redirected by these systems does not converge to a focal point or form an image, hence the name.

<span class="mw-page-title-main">Daylight factor</span>

In architecture, a daylight factor (DF) is the ratio of the light level inside a structure to the light level outside the structure. It is defined as:

<span class="mw-page-title-main">Skylight</span> Window in the ceiling-roof

A skylight is a light-permitting structure or window, usually made of transparent or translucent glass, that forms all or part of the roof space of a building for daylighting and ventilation purposes.

The Horizontal Skyscraper, designed by Steven Holl Architects and completed in 2009, is a mixed-use building located on the outskirts of Shenzhen, China. Situated in Dameisha, Yantian District, the complex includes offices for Vanke Co., a conference center, restaurant, an auditorium, a hotel, apartments and a large public park.

<span class="mw-page-title-main">Swanston Academic Building</span> Education in Victoria, Australia

The Swanston Academic building is an RMIT building designed by the architecture firm Lyons and is located on Swanston Street in Melbourne across from Peter Corrigan designed building 8 and ARM's Storey Hall. Construction began in September 2010 and was completed in September 2012. The budget for the SAB was $200,000,000. The new building contains 35,000 square metres (380,000 sq ft) of floor space, is 11 storeys high and provides 6 large lecture theatres for students. The colourful building is intended to reflect the cities surroundings in the façade. “The idea is to wear the ‘cloak’ of the city”.

<span class="mw-page-title-main">The Terry Thomas Building</span> Office building in Seattle, Washington

The Terry Thomas Building, located in the South Lake Union neighborhood of Seattle, Washington is a sustainable, LEED-certified office building completed in 2008. The Terry Thomas is Seattle's first commercial office building structure developed in decades without central air conditioning. It was designed by Seattle-based architectural firm Weber Thompson, who also designed the interiors of the building and use it as their headquarters.

<span class="mw-page-title-main">David Brower Center</span>

The David Brower Center is a nonprofit space located in downtown Berkeley, California, containing three floors of office space, a gallery focusing primarily on environmental and social art, conference facilities, a 178-seat theater, and a restaurant, Gather. It was named to honor David Brower, a Berkeley native who was the first executive director of the Sierra Club and a backer of Marion Edey’s founding of the League of Conservation Voters. The center is part of a larger mixed use development that includes the Oxford Plaza. The David Brower Center's mission is to "inspire and nurture current and future generations of leaders, with the goal of making sustainable thinking and practices mainstream."

Passive survivability refers to a building's ability to maintain critical life-support conditions in the event of extended loss of power, heating fuel, or water. This idea proposes that designers should incorporate ways for a building to continue sheltering inhabitants for an extended period of time during and after a disaster situation, whether it be a storm that causes a power outage, a drought which limits water supply, or any other possible event.

<span class="mw-page-title-main">David and Lucile Packard Foundation Headquarters</span> Office in California, United States

The David and Lucile Packard Foundation Headquarters is the corporate headquarters of the David and Lucile Packard Foundation, located in Los Altos, California. The Packard Foundation was created in 1964 by David Packard and his wife Lucile Salter Packard, one of the top 100 grant-making foundations in the United States, with the goals of improving the lives of children, enabling the creative pursuit of science, advancing reproductive health, and conserving and restoring the Earth’s natural systems. The David and Lucile Packard Foundation Headquarters is designed by EHDD to be the largest net zero energy building in California, and it has successfully reduced the energy use by 65% over conventional buildings.

<span class="mw-page-title-main">Prism lighting</span> Use of prisms to improve lighting

Prism lighting is the use of prisms to improve the distribution of light in a space. It is usually used to distribute daylight, and is a form of anidolic lighting.

References

  1. Kontadakis, Anton; Tsangrassoulis, Aris; Doulos, Lambros; Zerefos, Stelios (December 29, 2017). "A Review of Light Shelf Designs for Daylit Environment". Sustainability. 10 (1): 3. doi: 10.3390/su10010071 .