This article relies largely or entirely on a single source . (January 2019) |
The arithmetic progression game is a positional game where two players alternately pick numbers, trying to occupy a complete arithmetic progression of a given size.
The game is parameterized by two integers n > k. The game-board is the set {1,...,n}. The winning-sets are all the arithmetic progressions of length k. In a Maker-Breaker game variant, the first player (Maker) wins by occupying a k-length arithmetic progression, otherwise the second player (Breaker) wins.
The game is also called the van der Waerden game, [1] named after Van der Waerden's theorem. It says that, for any k, there exists some integer W(2,k) such that, if the integers {1, ..., W(2,k)} are partitioned arbitrarily into two sets, then at least one set contains an arithmetic progression of length k. This means that, if , then Maker has a winning strategy.
Unfortunately, this claim is not constructive - it does not show a specific strategy for Maker. Moreover, the current upper bound for W(2,k) is extremely large (the currently known bounds are: ).
Let W*(2,k) be the smallest integer such that Maker has a winning strategy. Beck [1] proves that . In particular, if , then the game is Maker's win (even though it is much smaller than the number that guarantees no-draw).
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of objects made out of integers or defined as generalizations of the integers.
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers r and k, there is some number N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression whose elements are of the same color. The least such N is the Van der Waerden number W(r, k), named after the Dutch mathematician B. L. van der Waerden.
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.
In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure; it is impossible for such objects to be "completely random".
Rado's theorem is a theorem from the branch of mathematics known as Ramsey theory. It is named for the German mathematician Richard Rado. It was proved in his thesis, Studien zur Kombinatorik.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.
In Ramsey theory, a set S of natural numbers is considered to be a large set if and only if Van der Waerden's theorem can be generalized to assert the existence of arithmetic progressions with common difference in S. That is, S is large if and only if every finite partition of the natural numbers has a cell containing arbitrarily long arithmetic progressions having common differences in S.
Erdős' conjecture on arithmetic progressions, often referred to as the Erdős–Turán conjecture, is a conjecture in arithmetic combinatorics. It states that if the sum of the reciprocals of the members of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions.
In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k, there exist arithmetic progressions of primes with k terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.
Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden numberW(r, k).
Ergodic Ramsey theory is a branch of mathematics where problems motivated by additive combinatorics are proven using ergodic theory.
In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.
A positional game is a kind of a combinatorial game for two players. It is described by:
A Maker-Breaker game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements and its family of winning-sets. It is played by two players, called Maker and Breaker, who alternately take previously-untaken elements.
A strong positional game is a kind of positional game. Like most positional games, it is described by its set of positions and its family of winning-sets. It is played by two players, called First and Second, who alternately take previously-untaken positions.
A Waiter-Client game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements, and its family of winning-sets. It is played by two players, called Waiter and Client. Each round, Waiter picks two elements, Client chooses one element and Waiter gets the other element.
A biased positional game is a variant of a positional game. Like most positional games, it is described by a set of positions/points/elements and a family of subsets, which are usually called the winning-sets. It is played by two players who take turns picking elements until all elements are taken. While in the standard game each player picks one element per turn, in the biased game each player takes a different number of elements.
The clique game is a positional game where two players alternately pick edges, trying to occupy a complete clique of a given size.
A box-making game is a biased positional game where two players alternately pick elements from a family of pairwise-disjoint sets ("boxes"). The first player - called BoxMaker - tries to pick all elements of a single box. The second player - called BoxBreaker - tries to pick at least one element of all boxes.
Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's Theorem is a special case of Szemerédi's Theorem for the case .
This game-related article is a stub. You can help Wikipedia by expanding it. |
This mathematics-related article is a stub. You can help Wikipedia by expanding it. |