Arteriolar vasodilator

Last updated

Arteriolar vasodilators are substances or medications that preferentially dilate arterioles. When used on people with certain heart conditions, it causes a phenomenon known as the cardiac steal syndrome.[ citation needed ] Arteriolar vasodilators increase intracapillary pressure, which causes fluid to enter the tissues, leading to vasodilatory edema. [1]

Arteriolar vasodilators include:

Related Research Articles

Hypertensive retinopathy Human disease

Hypertensive retinopathy is damage to the retina and retinal circulation due to high blood pressure.

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

Pulmonary edema fluid accumulation in the air spaces and parenchyma of the lungs

Pulmonary edema is fluid accumulation in the tissue and air spaces of the lungs. It leads to impaired gas exchange and may cause respiratory failure. It is due to either failure of the left ventricle of the heart to remove blood adequately from the pulmonary circulation, or an injury to the lung parenchyma or vasculature of the lung. Treatment is focused on three aspects: firstly improving respiratory function, secondly, treating the underlying cause, and thirdly avoiding further damage to the lung. Pulmonary edema, especially acute, can lead to fatal respiratory distress or cardiac arrest due to hypoxia. It is a cardinal feature of congestive heart failure. The term edema is from the Greek οἴδημα, from οἰδέω.

Microcirculation circulation of the blood in the smallest blood vessels

The microcirculation is the circulation of the blood in the smallest blood vessels, the microvessels of the microvasculature present within organ tissues. The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the capillaries, and blood flows out of the capillaries through venules into veins.

Vasodilation An increase in the internal diameter of blood vessels, especially arterioles or capillaries, due to relaxation of smooth muscle cells that line the vessels, and usually resulting in a decrease in blood pressure.

Vasodilation is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, which is the narrowing of blood vessels.

Vascular resistance is the resistance that must be overcome to push blood through the circulatory system and create flow. The resistance offered by the systemic circulation is known as the systemic vascular resistance (SVR) or may sometimes be called by the older term total peripheral resistance (TPR), while the resistance offered by the pulmonary circulation is known as the pulmonary vascular resistance (PVR). Systemic vascular resistance is used in calculations of blood pressure, blood flow, and cardiac function. Vasoconstriction increases SVR, whereas vasodilation decreases SVR.

Angiotensin II receptor blocker group of pharmaceuticals that modulate the renin–angiotensin system

Angiotensin II receptor blockers (ARBs), formally angiotensin II type 1 (AT1) receptor antagonists, also known as angiotensin receptor blocker, angiotensin II receptor antagonists, or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II type 1 receptor (AT1) and thereby block the arteriolar contraction and sodium retention effects of renin–angiotensin system.

Compliance is the ability of a hollow organ (vessel) to distend and increase volume with increasing transmural pressure or the tendency of a hollow organ to resist recoil toward its original dimensions on application of a distending or compressing force. It is the reciprocal of "elastance", hence elastance is a measure of the tendency of a hollow organ to recoil toward its original dimensions upon removal of a distending or compressing force.

High-altitude pulmonary edema Human disease

High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). However, cases have also been reported between 1,500–2,500 metres or 4,900–8,200 feet in more vulnerable subjects.

Isoprenaline chemical compound

Isoprenaline, or isoproterenol, is a medication used for the treatment of bradycardia, heart block, and rarely for asthma. It is a non-selective β adrenoreceptor agonist that is the isopropylamine analog of epinephrine (adrenaline).

Hydralazine chemical compound

Hydralazine, sold under the brand name Apresoline among others, is a medication used to treat high blood pressure and heart failure. This includes high blood pressure in pregnancy and very high blood pressure resulting in symptoms. It has been found to be particularly useful in heart failure together with isosorbide dinitrate in people of African descent. It is given by mouth or by injection into a vein. Effects usually begin around 15 minutes and last up to six hours.

Exercise hypertension is an excessive rise in blood pressure during exercise. Many of those with exercise hypertension have spikes in systolic pressure to 250 mmHg or greater.

Hyperaemia is the increase of blood flow to different tissues in the body. It can have medical implications but is also a regulatory response, allowing change in blood supply to different tissues through vasodilation. Clinically, hyperaemia in tissues manifest as erythema because of the engorgement of vessels with oxygenated blood. Hyperaemia can also occur due to a fall in atmospheric pressure outside the body. The term is from Greek ὑπέρ + αἷμα.

In the physiology of the kidney, tubuloglomerular feedback (TGF) is a feedback system inside the kidneys. Within each nephron, information from the renal tubules is signaled to the glomerulus. Tubuloglomerular feedback is one of several mechanisms the kidney uses to regulate glomerular filtration rate (GFR). It involves the concept of purinergic signaling, in which an increased distal tubular sodium chloride concentration causes a basolateral release of adenosine from the macula densa cells. This initiates a cascade of events that ultimately brings GFR to an appropriate level.

Efonidipine chemical compound

Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efnocar".

Anipamil chemical compound

Anipamil is a calcium channel blocker, specifically of the phenylalkylamine type. This type is separate from its more common cousin Dihydropyridine. Anipamil is an analog of the more common drug verapamil, which is the most common type of phenylalkylamine style calcium channel blocker. Anipamil has been shown to be a more effective antiarrhythmic medication than verapamil because it does not cause hypertension as seen in verapamil. It is able to do this by bonding to the myocardium tighter then verapamil.

Coronary steal is a phenomenon where an alteration of circulation patterns leads to a reduction in the blood flow directed to the coronary circulation. It is caused when there is narrowing of the coronary arteries and a coronary vasodilator is used – "stealing" blood away from those parts of the heart. This happens as a result of the narrowed coronary arteries being always maximally dilated to compensate for the decreased upstream blood supply. Thus, dilating the resistance vessels in the coronary circulation causes blood to be shunted away from the coronary vessels supplying the ischemic zones, creating more ischemia.

Heat edema is a cutaneous condition characterized by dependent edema from vasodilatory pooling. Heat causes the blood vessels to expand (dilate), so body fluid moves into the hands or legs by gravity.

Mayer waves are cyclic changes or waves in arterial blood pressure brought about by oscillations in baroreceptor and chemoreceptor reflex control systems. The waves are seen both in the ECG and in continuous blood pressure curves and have a frequency about 0.1 Hz. These waves were originally described by Siegmund Mayer, Ewald Hering and Ludwig Traube hence originally called "Traube–Hering–Mayer waves".

Vasodilatory shock, vasogenic shock, or vasoplegic shock is a medical emergency belonging to shock along with cardiogenic shock, septic shock, allergen-induced shock and hypovolemic shock. When the blood vessels suddenly relax, it results in vasodilation. In vasodilatory shock, the blood vessels are too relaxed leading to extreme vasodilation and blood pressure drops and blood flow becomes very low. Without enough blood pressure, blood and oxygen won’t be pushed to reach the body’s organs. If vasodilatory shock lasts more than a few minutes, the lack of oxygen starts to damage the body’s organs. Vasodilatory shock like other types of shock should be treated quickly, otherwise it can cause permanent organ damage or death as a result of multiple organ dysfunction.

References

  1. Messerli, F (September 2001). "Vasodilatory edema: a common side effect of antihypertensive therapy". American Journal of Hypertension. 14 (9): 978–979. doi: 10.1016/s0895-7061(01)02178-1 . ISSN   0895-7061. PMID   11587169.