Artificial language

Last updated

Artificial languages are languages of a typically very limited size which emerge either in computer simulations between artificial agents, robot interactions or controlled psychological experiments with humans. They are different from both constructed languages and formal languages in that they have not been consciously devised by an individual or group but are the result of (distributed) conventionalisation processes, much like natural languages. Opposed to the idea of a central designer, the field of artificial language evolution in which artificial languages are studied can be regarded as a sub-part of the more general cultural evolution studies.

Contents

Origin

The idea of creation of artificial language arose in 17th and 18th century as a result of gradually decreasing international role of Latin. [1] The initial schemes were mainly aimed at the development of a rational language free from inconsistence of living language and based on classification of concepts. The material of living languages also appears later.

Motivation

The lack of empirical evidence in the field of evolutionary linguistics has led many researchers to adopt computer simulations as a means to investigate the ways in which artificial agents can self-organize languages with natural-like properties. [2] This research is based on the hypothesis that natural language is a complex adaptive system that emerges through interactions between individuals and continues to evolve in order to remain adapted to the needs and capabilities of its users. By explicitly building all assumptions into computer simulations, this strand of research strives to experimentally investigate the dynamics underlying language change as well as questions regarding the origin of language under controlled conditions.

Due to its success the paradigm has also been extended to investigate the emergence of new languages in psychological experiments with humans, [3] leading up to the new paradigm of experimental semiotics. [4]

Because the focus of the investigations lies on the conventionalisation dynamics and higher-level properties of the resulting languages rather than specific details of the conventions, artificially evolved languages are typically not documented or re-used outside the single experiment trial or simulation run in which they emerge. In fact, the limited size and short-lived nature of artificial languages are probably the only things that sets them apart from natural languages, since all languages are artificial insofar as they are conventional (see also constructed language).

There is also a group of "languages, created with a political decree". This is a usual practice of the Soviet Internal and External social engineering (1922-1991) as well as colonial and post-colonial language manipulations enforced by some of the strongest colonial powers during the mid-XX-ht century. One of the bitter examples of those is so called "Macedonian language" created by the Soviet and Former Yugoslavian communists during 1945 with the intention to separate Bulgarians into two groups and to assimilate the Western Bulgarian into the Former Yugoslavian convent under the Yosif Tito's control. []

Uses

Artificial languages have been used in research in developmental psycholinguistics. Because researchers have a great deal of control over artificial languages, they have used these languages in statistical language acquisition studies, in which it can be helpful to control the linguistic patterns heard by infants. [5]

See also

Related Research Articles

Computational linguistics is an interdisciplinary field concerned with the computational modelling of natural language, as well as the study of appropriate computational approaches to linguistic questions. In general, computational linguistics draws upon linguistics, computer science, artificial intelligence, mathematics, logic, philosophy, cognitive science, cognitive psychology, psycholinguistics, anthropology and neuroscience, among others.

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Evolutionary linguistics</span> Sociobiological approaches to linguistics

Evolutionary linguistics or Darwinian linguistics is a sociobiological approach to the study of language. Evolutionary linguists consider linguistics as a subfield of sociobiology and evolutionary psychology. The approach is also closely linked with evolutionary anthropology, cognitive linguistics and biolinguistics. Studying languages as the products of nature, it is interested in the biological origin and development of language. Evolutionary linguistics is contrasted with humanistic approaches, especially structural linguistics.

<span class="mw-page-title-main">Cognition</span> Act or process of knowing

Cognition refers to "the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, intelligence, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and computation, problem solving and decision making, comprehension and production of language. Imagination is also a cognitive process, it is considered as such because it involves thinking about possibilities. Cognitive processes use existing knowledge and discover new knowledge.

Cognitive science is the scientific study either of mind or of intelligence . Practically every formal introduction to cognitive science stresses that it is a highly interdisciplinary research area in which psychology, neuroscience, linguistics, philosophy, computer science, anthropology, and biology are its principal specialized or applied branches. Therefore, we may distinguish cognitive studies of either human or animal brains, the mind and the brain.

<span class="mw-page-title-main">Evolutionary computation</span> Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

<span class="mw-page-title-main">Luc Steels</span>

Luc Steels is a Belgian scientist and artist. Steels is considered a pioneer of Artificial Intelligence in Europe who has made contributions to expert systems, behavior-based robotics, artificial life and evolutionary computational linguistics. He was a fellow of the Catalan Institution for Research and Advanced Studies ICREA associated as a research professor with the Institute for Evolutionary Biology (UPF/CSIC) in Barcelona. He was formerly founding Director of the Artificial Intelligence Laboratory of the Vrije Universiteit Brussel and founding director of the Sony Computer Science Laboratory in Paris. Steels has also been active in the arts collaborating with visual artists and theater makers and composing music for opera.

Computational semiotics is an interdisciplinary field that applies, conducts, and draws on research in logic, mathematics, the theory and practice of computation, formal and natural language studies, the cognitive sciences generally, and semiotics proper. The term encompasses both the application of semiotics to computer hardware and software design and, conversely, the use of computation for performing semiotic analysis. The former focuses on what semiotics can bring to computation; the latter on what computation can bring to semiotics.

<span class="mw-page-title-main">Generative science</span> Study of how complex behaviour can be generated by deterministic and finite rules and parameters

Generative science is an area of research that explores the natural world and its complex behaviours. It explores ways "to generate apparently unanticipated and infinite behaviour based on deterministic and finite rules and parameters reproducing or resembling the behavior of natural and social phenomena". By modelling such interactions, it can suggest that properties exist in the system that had not been noticed in the real world situation. An example field of study is how unintended consequences arise in social processes.

The cognitive revolution was an intellectual movement that began in the 1950s as an interdisciplinary study of the mind and its processes. It later became known collectively as cognitive science. The relevant areas of interchange were between the fields of psychology, linguistics, computer science, anthropology, neuroscience, and philosophy. The approaches used were developed within the then-nascent fields of artificial intelligence, computer science, and neuroscience. In the 1960s, the Harvard Center for Cognitive Studies and the Center for Human Information Processing at the University of California, San Diego were influential in developing the academic study of cognitive science. By the early 1970s, the cognitive movement had surpassed behaviorism as a psychological paradigm. Furthermore, by the early 1980s the cognitive approach had become the dominant line of research inquiry across most branches in the field of psychology.

<span class="mw-page-title-main">Evolutionary developmental psychology</span> Psychology field concerned with Darwinian evolution

Evolutionary developmental psychology (EDP) is a research paradigm that applies the basic principles of evolution by natural selection, to understand the development of human behavior and cognition. It involves the study of both the genetic and environmental mechanisms that underlie the development of social and cognitive competencies, as well as the epigenetic processes that adapt these competencies to local conditions.

Artificial grammar learning (AGL) is a paradigm of study within cognitive psychology and linguistics. Its goal is to investigate the processes that underlie human language learning by testing subjects' ability to learn a made-up grammar in a laboratory setting. It was developed to evaluate the processes of human language learning but has also been utilized to study implicit learning in a more general sense. The area of interest is typically the subjects' ability to detect patterns and statistical regularities during a training phase and then use their new knowledge of those patterns in a testing phase. The testing phase can either use the symbols or sounds used in the training phase or transfer the patterns to another set of symbols or sounds as surface structure.

Cognitive philology is the science that studies written and oral texts as the product of human mental processes. Studies in cognitive philology compare documentary evidence emerging from textual investigations with results of experimental research, especially in the fields of cognitive and ecological psychology, neurosciences and artificial intelligence. "The point is not the text, but the mind that made it". Cognitive Philology aims to foster communication between literary, textual, philological disciplines on the one hand and researches across the whole range of the cognitive, evolutionary, ecological and human sciences on the other.

<span class="mw-page-title-main">Basic science (psychology)</span> Subdisciplines within psychology

Some of the research that is conducted in the field of psychology is more "fundamental" than the research conducted in the applied psychological disciplines, and does not necessarily have a direct application. The subdisciplines within psychology that can be thought to reflect a basic-science orientation include biological psychology, cognitive psychology, neuropsychology, and so on. Research in these subdisciplines is characterized by methodological rigor. The concern of psychology as a basic science is in understanding the laws and processes that underlie behavior, cognition, and emotion. Psychology as a basic science provides a foundation for applied psychology. Applied psychology, by contrast, involves the application of psychological principles and theories yielded up by the basic psychological sciences; these applications are aimed at overcoming problems or promoting well-being in areas such as mental and physical health and education.

Natural computing, also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials to compute. The main fields of research that compose these three branches are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others.

<span class="mw-page-title-main">Embodied cognition</span> Interdisciplinary theory

Embodied cognition is the theory that many features of cognition, whether human or otherwise, are shaped by aspects of an organism's entire body. Sensory and motor systems are seen as fundamentally integrated with cognitive processing. The cognitive features include high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built into the organism's functional structure.

Statistical language acquisition, a branch of developmental psycholinguistics, studies the process by which humans develop the ability to perceive, produce, comprehend, and communicate with natural language in all of its aspects through the use of general learning mechanisms operating on statistical patterns in the linguistic input. Statistical learning acquisition claims that infants' language-learning is based on pattern perception rather than an innate biological grammar. Several statistical elements such as frequency of words, frequent frames, phonotactic patterns and other regularities provide information on language structure and meaning for facilitation of language acquisition.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

<span class="mw-page-title-main">Luis M. Rocha</span> American computer scientist

Luis M. Rocha is the George J. Klir Professor of Systems Science at the Thomas J. Watson College of Engineering and Applied Science, Binghamton University. He has been director of the NSF-NRT Complex Networks and Systems graduate Program in Informatics at Indiana University, Bloomington, USA. He is also director of the Center for Social and Biomedical Complexity, between Binghamton University and Indiana University, Bloomington, a Fulbright Scholar, and Principal Investigator at the Instituto Gulbenkian de Ciencia, Portugal. His research is on complex systems and networks, computational and systems biology, biomedical complexity and digital health, and computational intelligence.

Computational Psychometrics is an interdisciplinary field fusing theory-based psychometrics, learning and cognitive sciences, and data-driven AI-based computational models as applied to large-scale/high-dimensional learning, assessment, biometric, or psychological data. Computational psychometrics is frequently concerned with providing actionable and meaningful feedback to individuals based on measurement and analysis of individual differences as they pertain to specific areas of enquiry.

References

  1. Maat, Jaap. "Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leibniz." PhD diss., Institute for Logic, Language, and Computation, University of Amsterdam, Amsterdam, 1999
  2. Steels, Luc (2006). How To Do Experiments in Artificial Language Evolution and Why. Proceedings of the 6th International Conference EVOLANG6. World Scientific Publishing Co. pp. 323–332. doi:10.1142/9789812774262_0041.
  3. Scott-Phillips, Thomas C; Kirby, Simon (2010). "Language evolution in the laboratory". Trends in Cognitive Sciences. 14 (9): 411–417. doi:10.1016/j.tics.2010.06.006. PMID   20675183. S2CID   24136426.
  4. Galantucci, Bruno (April 2009). "Experimental Semiotics: A New Approach for Studying Communication as a Form of Joint Action". Topics in Cognitive Science. 1 (2): 393–410. doi:10.1111/j.1756-8765.2009.01027.x. PMC   4503356 . PMID   25164941.
  5. Hay, J. F.; Pelucchi, B.; Estes, K. G.; Saffran, J. R. (2011). "Linking sounds to meanings: Infant statistical learning in a natural language". Cognitive Psychology. 63 (2): 93–106. doi:10.1016/j.cogpsych.2011.06.002. PMC   3143199 . PMID   21762650.

Alan Reed Libert, Artificial Languages , Oxford Research Encyclopedia on Linguistics, June 2018