Artin's criterion

Last updated

In mathematics, Artin's criteria [1] [2] [3] [4] are a collection of related necessary and sufficient conditions on deformation functors which prove the representability of these functors as either Algebraic spaces [5] or as Algebraic stacks. In particular, these conditions are used in the construction of the moduli stack of elliptic curves [6] and the construction of the moduli stack of pointed curves. [7]

Contents

Notation and technical notes

Throughout this article, let be a scheme of finite-type over a field or an excellent DVR. will be a category fibered in groupoids, will be the groupoid lying over .

A stack is called limit preserving if it is compatible with filtered direct limits in , meaning given a filtered system there is an equivalence of categories

An element of is called an algebraic element if it is the henselization of an -algebra of finite type.

A limit preserving stack over is called an algebraic stack if

  1. For any pair of elements the fiber product is represented as an algebraic space
  2. There is a scheme locally of finite type, and an element which is smooth and surjective such that for any the induced map is smooth and surjective.

See also

Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, a formal group law is a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner (1946). The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups and Lie algebras. They are used in algebraic number theory and algebraic topology.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, the Artin approximation theorem is a fundamental result of Michael Artin (1969) in deformation theory which implies that formal power series with coefficients in a field k are well-approximated by the algebraic functions on k.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space, refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by Alexander Grothendieck (1961). Hironaka's example shows that non-projective varieties need not have Hilbert schemes.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

In algebraic geometry, a stable curve is an algebraic curve that is asymptotically stable in the sense of geometric invariant theory.

This is a glossary of algebraic geometry.

In algebra, Schlessinger's theorem is a theorem in deformation theory introduced by Schlessinger (1968) that gives conditions for a functor of artinian local rings to be pro-representable, refining an earlier theorem of Grothendieck.

In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack.

In algebraic geometry, a Deligne–Mumford stack is a stack F such that

A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence.

In algebraic geometry, a quasi-coherent sheaf on an algebraic stack is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and in , a quasi-coherent sheaf on S together with maps implementing the compatibility conditions among 's.

References

  1. Artin, M. (September 1974). "Versal deformations and algebraic stacks". Inventiones Mathematicae. 27 (3): 165–189. doi:10.1007/bf01390174. ISSN   0020-9910. S2CID   122887093.
  2. Artin, M. (2015-12-31), "Algebraization of formal moduli: I", Global Analysis: Papers in Honor of K. Kodaira (PMS-29), Princeton: Princeton University Press, pp. 21–72, doi:10.1515/9781400871230-003, ISBN   978-1-4008-7123-0
  3. Artin, M. (January 1970). "Algebraization of Formal Moduli: II. Existence of Modifications". The Annals of Mathematics. 91 (1): 88–135. doi:10.2307/1970602. ISSN   0003-486X. JSTOR   1970602.
  4. Artin, M. (January 1969). "Algebraic approximation of structures over complete local rings". Publications Mathématiques de l'IHÉS. 36 (1): 23–58. doi:10.1007/bf02684596. ISSN   0073-8301. S2CID   4617543.
  5. Hall, Jack; Rydh, David (2019). "Artin's criteria for algebraicity revisited". Algebra & Number Theory. 13 (4): 749–796. arXiv: 1306.4599 . doi:10.2140/ant.2019.13.749. S2CID   119597571.
  6. Deligne, P.; Rapoport, M. (1973), Les schémas de modules de courbes elliptiques, Lecture Notes in Mathematics, vol. 349, Springer Berlin Heidelberg, pp. 143–316, doi:10.1007/bfb0066716, ISBN   978-3-540-06558-6
  7. Knudsen, Finn F. (1983-12-01). "The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$". Mathematica Scandinavica. 52: 161–199. doi: 10.7146/math.scand.a-12001 . ISSN   1903-1807.