In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant.
The counterpart descending chain condition may also be applied to these posets, however there is currently no need for the terminology "DCCP" since such rings are already called left or right perfect rings. (See § Noncommutative rings below.)
Noetherian rings (e.g. principal ideal domains) are typical examples, but some important non-Noetherian rings also satisfy (ACCP), notably unique factorization domains and left or right perfect rings.
It is well known that a nonzero nonunit in a Noetherian integral domain factors into irreducibles. The proof of this relies on only (ACCP) not (ACC), so in any integral domain with (ACCP), an irreducible factorization exists. (In other words, any integral domains with (ACCP) are atomic. But the converse is false, as shown in ( Grams 1974 ).) Such a factorization may not be unique; the usual way to establish uniqueness of factorizations uses Euclid's lemma, which requires factors to be prime rather than just irreducible. Indeed, one has the following characterization: let A be an integral domain. Then the following are equivalent.
The so-called Nagata criterion holds for an integral domain A satisfying (ACCP): Let S be a multiplicatively closed subset of A generated by prime elements. If the localization S−1A is a UFD, so is A. [1] (Note that the converse of this is trivial.)
An integral domain A satisfies (ACCP) if and only if the polynomial ring A[t] does. [2] The analogous fact is false if A is not an integral domain. [3]
An integral domain where every finitely generated ideal is principal (that is, a Bézout domain) satisfies (ACCP) if and only if it is a principal ideal domain. [4]
The ring Z+XQ[X] of all rational polynomials with integral constant term is an example of an integral domain (actually a GCD domain) that does not satisfy (ACCP), for the chain of principal ideals
is non-terminating.
In the noncommutative case, it becomes necessary to distinguish the right ACCP from left ACCP. The former only requires the poset of ideals of the form xR to satisfy the ascending chain condition, and the latter only examines the poset of ideals of the form Rx.
A theorem of Hyman Bass in ( Bass 1960 ) now known as "Bass' Theorem P" showed that the descending chain condition on principal left ideals of a ring R is equivalent to R being a right perfect ring. D. Jonah showed in ( Jonah 1970 ) that there is a side-switching connection between the ACCP and perfect rings. It was shown that if R is right perfect (satisfies right DCCP), then R satisfies the left ACCP, and symmetrically, if R is left perfect (satisfies left DCCP), then it satisfies the right ACCP. The converses are not true, and the above switches between "left" and "right" are not typos.
Whether the ACCP holds on the right or left side of R, it implies that R has no infinite set of nonzero orthogonal idempotents, and that R is a Dedekind finite ring. [5]
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal. Some authors such as Bourbaki refer to PIDs as principal rings.
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:
In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.
In mathematics, a GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).
In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that every subset is compact.
In mathematics, a Bézout domain is an integral domain in which the sum of two principal ideals is also a principal ideal. This means that Bézout's identity holds for every pair of elements, and that every finitely generated ideal is principal. Bézout domains are a form of Prüfer domain.
In mathematics, a principal right (left) ideal ring is a ring R in which every right (left) ideal is of the form xR (Rx) for some element x of R. When this is satisfied for both left and right ideals, such as the case when R is a commutative ring, R can be called a principal ideal ring, or simply principal ring.
In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring R that has finite uniform dimension as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of R.
In mathematics, more specifically ring theory, an atomic domain or factorization domain is an integral domain in which every non-zero non-unit can be written in at least one way as a finite product of irreducible elements. Atomic domains are different from unique factorization domains in that this decomposition of an element into irreducibles need not be unique; stated differently, an irreducible element is not necessarily a prime element.
In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.
In mathematics, an overring of an integral domain contains the integral domain, and the integral domain's field of fractions contains the overring. Overrings provide an improved understanding of different types of rings and domains.
This is a glossary of commutative algebra.