Ashdown's medium

Last updated
Burkholderia pseudomallei on Ashdown's medium Bps close.JPG
Burkholderia pseudomallei on Ashdown's medium

Ashdown's medium is a selective culture medium for the isolation and characterisation of Burkholderia pseudomallei (the bacterium that causes melioidosis).

Ashdown's medium was first described by LR Ashdown in 1979. [1] It is used for the selective isolation of B. pseudomallei from clinical specimens taken from non-sterile sites (e.g., sputum) [2] as well as to produce the characteristic morphology of B. pseudomallei. [3]

The medium contains crystal violet and gentamicin as selective agents to suppress the growth of other bacteria. Colonies of B. pseudomallei also take up neutral red which is present in the medium, and this further helps to distinguish it from other bacteria. Gentamicin slightly inhibits the growth of B. pseudomallei and so specimens inoculated onto Ashdown's agar needs to be incubated for a minimum of 96 hours instead of 48 hours. The medium is also enriched with 4% glycerol, which is required by some strains of B. pseudomallei to grow. B. pseudomallei usually produces flat wrinkled purple colonies on Ashdown's agar.

Ashdown's medium has the advantage of being extremely cheap to produce: the cost of each plate is only US$0.04. [4]

Related Research Articles

Agar plate Petri dish

An agar plate is a Petri dish that contains agar as a solid growth medium plus nutrients, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.

Melioidosis Human disease

Melioidosis is an infectious disease caused by a gram-negative bacterium called Burkholderia pseudomallei. Most people infected with B. pseudomallei experience no symptoms; however, those who do experience symptoms have signs and symptoms that range from mild such as fever, skin changes, pneumonia, and abscesses to severe with inflammation of the brain, inflammation of the joints and dangerously low blood pressure that causes death. Approximately 10% of people with melioidosis develop symptoms that last longer than two months, termed "chronic melioidosis".

Microbiological culture Method of allowing microorganisms to multiply in a controlled medium

A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as a research tool in molecular biology.

<i>Erysipelothrix rhusiopathiae</i> species of bacterium

Erysipelothrix rhusiopathiae is a Gram-positive, catalase-negative, rod-shaped, non-spore-forming, nonacid-fast, nonmotile bacterium. Distributed worldwide, E. rhusiopathiae is primarily considered an animal pathogen, causing the disease known as erysipelas that may affect a wide range of animals. Pigs, turkeys and laying hens are most commonly affected, but cases have been reported in other mammals, birds, fish, and reptiles. In pigs, the disease is known as "diamond skin disease". The bacterium can also cause zoonotic infections in humans, called erysipeloid. The human disease called erysipelas is not caused by E. rhusiopathiae, but by various members of the genus Streptococcus.

<i>Francisella</i> genus of bacteria

Francisella is a genus of pathogenic, Gram-negative bacteria. They are small coccobacillary or rod-shaped, nonmotile organisms, which are also facultative intracellular parasites of macrophages. Strict aerobes, Francisella colonies bear a morphological resemblance to those of the genus Brucella.

<i>Burkholderia</i> genus of bacteria

Burkholderia is a genus of Proteobacteria whose pathogenic members include the Burkholderia cepacia complex which attacks humans and Burkholderia mallei, responsible for glanders, a disease that occurs mostly in horses and related animals; Burkholderia pseudomallei, causative agent of melioidosis; and Burkholderia cepacia, an important pathogen of pulmonary infections in people with cystic fibrosis (CF).

<i>Nocardia</i> genus of Gram-positive bacteria

Nocardia is a genus of weakly staining Gram-positive, catalase-positive, rod-shaped bacteria. It forms partially acid-fast beaded branching filaments. It contains a total of 85 species. Some species are nonpathogenic, while others are responsible for nocardiosis. Nocardia species are found worldwide in soil rich in organic matter. In addition, they are oral microflora found in healthy gingiva, as well as periodontal pockets. Most Nocardia infections are acquired by inhalation of the bacteria or through traumatic introduction.

Bartonellosis is an infectious disease produced by bacteria of the genus Bartonella. Bartonella species cause diseases such as Carrión's disease, trench fever, cat-scratch disease, bacillary angiomatosis, peliosis hepatis, chronic bacteremia, endocarditis, chronic lymphadenopathy, and neurological disorders.

<i>Burkholderia cepacia</i> complex group of phenotypically similar but genotypically distinct species (genomovars) in the genus Burkholderia

Burkholderia cepacia complex (BCC), or simply Burkholderia cepacia, is a group of catalase-producing, lactose-nonfermenting, Gram-negative bacteria composed of at least 20 different species, including B. cepacia, B. multivorans, B. cenocepacia, B. vietnamiensis, B. stabilis, B. ambifaria, B. dolosa, B. anthina, B. pyrrocinia and B. ubonensis. B. cepacia is an opportunistic human pathogen that most often causes pneumonia in immunocompromised individuals with underlying lung disease. Patients with sickle-cell haemoglobinopathies are also at risk. The species also attacks young onion and tobacco plants, as well as displaying a remarkable ability to digest oil.

<i>Stenotrophomonas maltophilia</i> species of bacterium

Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.

<i>Burkholderia pseudomallei</i> species of bacterium

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. It infects humans and animals and causes the disease melioidosis. It is also capable of infecting plants.

<i>Burkholderia mallei</i> species of bacterium

Burkholderia mallei is a Gram-negative, bipolar, aerobic bacterium, a human and animal pathogen of genus Burkholderia causing glanders; the Latin name of this disease (malleus) gave its name to the species causing it. It is closely related to B. pseudomallei, and by multilocus sequence typing it is a subspecies of B. pseudomallei.B. mallei evolved from B. pseudomallei by selective reduction and deletions from the B. pseudomallei genome. Unlike B. pseudomallei and other genus members, B. mallei is nonmotile; its shape is coccobacillary measuring some 1.5–3.0 μm in length and 0.5–1.0 μm in diameter with rounded ends.

XLD agar culture medium used in microbiology

Xylose Lysine Deoxycholate agar is a selective growth medium used in the isolation of Salmonella and Shigella species from clinical samples and from food. It has a pH of approximately 7.4, leaving it with a bright pink or red appearance due to the indicator phenol red. Sugar fermentation lowers the pH and the phenol red indicator registers this by changing to yellow. Most gut bacteria, including Salmonella, can ferment the sugar xylose to produce acid; Shigella colonies cannot do this and therefore remain red. After exhausting the xylose supply Salmonella colonies will decarboxylate lysine, increasing the pH once again to alkaline and mimicking the red Shigella colonies. Salmonellae metabolise thiosulfate to produce hydrogen sulfide, which leads to the formation of colonies with black centers and allows them to be differentiated from the similarly coloured Shigella colonies.

<i>Chromobacterium violaceum</i> species of bacterium

Chromobacterium violaceum is a Gram-negative, facultative anaerobic, non-sporing coccobacillus. It is motile with the help of a single flagellum which is located at the pole of the coccobacillus. Usually, there are one or two more lateral flagella as well. It is part of the normal flora of water and soil of tropical and sub-tropical regions of the world. It produces a natural antibiotic called violacein, which may be useful for the treatment of colon and other cancers. It grows readily on nutrient agar, producing distinctive smooth low convex colonies with a dark violet metallic sheen. Some strains of the bacteria which do not produce this pigment have also been reported. It has the ability to break down tarballs.

Bile esculin agar

Bile Esculin Agar (BEA) is a selective differential agar used to isolate and identify members of the genus Enterococcus, formerly part of the "group D streptococci".

<i>Sporothrix schenckii</i> species of fungus

Sporothrix schenckii, a fungus that can be found worldwide in the environment, is named for medical student Benjamin Schenck who in 1896 was the first to isolate it from a human specimen. The species is present in soil as well as in and on living and decomposing plant material such as peat moss. It can infect humans as well as animals and is the causative agent of sporotrichosis, commonly known as "rose handler's disease." The most common route of infection is the introduction of spores to the body through a cut or puncture wound in the skin. Infection commonly occurs in otherwise healthy individuals but is rarely life-threatening and can be treated with antifungals. In the environment it is found growing as filamentous hyphae. In host tissue it is found as a yeast. The transition between the hyphal and yeast forms is temperature dependent making S. schenckii a thermally dimorphic fungus.

<i>Burkholderia thailandensis</i> species of bacterium

Burkholderia thailandensis is a nonfermenting motile, Gram-negative bacillus that occurs naturally in soil. It is closely related to Burkholderia pseudomallei, but unlike B. pseudomallei, it only rarely causes disease in humans or animals. The lethal inoculum is approximately 1000 times higher than for B. pseudomallei. It is usually distinguished from B. pseudomallei by its ability to assimilate arabinose. Other differences between these species include lipopolysaccharide composition, colony morphology, and differences in metabolism.

Hektoen enteric agar selective and differential agar primarily used to recover Salmonella and Shigella from patient specimens

Hektoen enteric agar is a selective and differential agar primarily used to recover Salmonella and Shigella from patient specimens. HEA contains indicators of lactose fermentation and hydrogen sulfide production; as well as inhibitors to prevent the growth of Gram-positive bacteria. It is named after the Hektoen Institute in Chicago, where researchers developed the agar.

New York City agar

The N.Y.C medium or GC medium agar is used for isolating Gonococci.

Granada medium

Granada medium is a selective and differential culture medium designed to selectively isolate Streptococcus agalactiae and differentiate it from other microorganisms. Granada Medium was developed by Dr. Manuel Rosa-Fraile et al. at the Service of Microbiology in the Hospital Virgen de las Nieves in Granada (Spain).

References

  1. Ashdown LR (1979). "An improved screening technique for isolation of Pseudomonas pseudomallei from clinical specimens". Pathology. 11 (2): 293–7. doi:10.3109/00313027909061954. PMID   460953.
  2. Peacock SJ, Chieng G, Cheng AC, et al. (2005). "Comparison of Ashdown's medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei" (PDF). J Clin Microbiol. 43 (10): 5359–61. doi:10.1128/JCM.43.10.5359-5361.2005. PMC   1248505 . PMID   16208018.
  3. Chantratita N, Wuthiekanun V, Boonbumrung K, et al. (2007). "Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei". J Bacteriol. 189 (3): 807–17. doi:10.1128/JB.01258-06. PMC   1797308 . PMID   17114252.
  4. Phetsouvanh R, Phongmany S, Newton P, et al. (2001). "Melioidosis and Pandora's box in the Lao People's Democratic Republic". Clin Infect Dis. 32 (4): 653–4. doi: 10.1086/318713 . PMID   11181133.