In economics, assignment valuation is a kind of a utility function on sets of items. It was introduced by Shapley [1] and further studied by Lehmann, Lehmann and Nisan, [2] who use the term OXS valuation (not to be confused with XOS valuation). Fair item allocation in this setting was studied by Benabbou, Chakraborty, Elkind, Zick and Igarashi. [3] [4]
Assignment valuations correspond to preferences of groups. In each group, there are several individuals; each individual attributes a certain numeric value to each item. The assignment-valuation of the group to a set of items S is the value of the maximum weight matching of the items in S to the individuals in the group.
The assignment valuations are a subset of the submodular valuations.
Suppose there are three items and two agents who value the items as follows:
x | y | z | |
---|---|---|---|
Alice: | 5 | 3 | 1 |
George: | 6 | 2 | 4.5 |
Then the assignment-valuation v corresponding to the group {Alice,George} assigns the following values:
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows:
Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.
Entitlement in fair division describes that proportion of the resources or goods to be divided that a player can expect to receive. In many fair division settings, all agents have equal entitlements, which means that each agent is entitled to 1/n of the resource. But there are practical settings in which agents have different entitlements. Some examples are:
Market design is a practical methodology for creation of markets of certain properties, which is partially based on mechanism design. In some markets, prices may be used to induce the desired outcomes — these markets are the study of auction theory. In other markets, prices may not be used — these markets are the study of matching theory.
In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset S of elements of the matroid is, similarly, the maximum size of an independent subset of S, and the rank function of the matroid maps sets of elements to their ranks.
Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.
Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.
Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.
The undercut procedure is a procedure for fair item assignment between two people. It provably finds a complete envy-free item assignment whenever such assignment exists. It was presented by Brams and Kilgour and Klamler and simplified and extended by Aziz.
The envy-graph procedure is a procedure for fair item allocation. It can be used by several people who want to divide among them several discrete items, such as heirlooms, sweets, or seats in a class.
Rank-maximal (RM) allocation is a rule for fair division of indivisible items. Suppose we have to allocate some items among people. Each person can rank the items from best to worst. The RM rule says that we have to give as many people as possible their best (#1) item. Subject to that, we have to give as many people as possible their next-best (#2) item, and so on.
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into parts and taking the part with the minimum value. An allocation of items among agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-n maximin-share. MMS fairness is a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split ( of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different.
Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft.
When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.
Egalitarian item allocation, also called max-min item allocation is a fair item allocation problem, in which the fairness criterion follows the egalitarian rule. The goal is to maximize the minimum value of an agent. That is, among all possible allocations, the goal is to find an allocation in which the smallest value of an agent is as large as possible. In case there are two or more allocations with the same smallest value, then the goal is to select, from among these allocations, the one in which the second-smallest value is as large as possible, and so on. Therefore, an egalitarian item allocation is sometimes called a leximin item allocation.
Proportional item allocation is a fair item allocation problem, in which the fairness criterion is proportionality - each agent should receive a bundle that they value at least as much as 1/n of the entire allocation, where n is the number of agents.
Ordinal Pareto efficiency refers to several adaptations of the concept of Pareto-efficiency to settings in which the agents only express ordinal utilities over items, but not over bundles. That is, agents rank the items from best to worst, but they do not rank the subsets of items. In particular, they do not specify a numeric value for each item. This may cause an ambiguity regarding whether certain allocations are Pareto-efficient or not. As an example, consider an economy with three items and two agents, with the following rankings:
The welfare maximization problem is an optimization problem studied in economics and computer science. Its goal is to partition a set of items among agents with different utility functions, such that the welfare – defined as the sum of the agents' utilities – is as high as possible. In other words, the goal is to find an item allocation satisfying the utilitarian rule.
{{cite journal}}
: Cite journal requires |journal=
(help)