Asymptote (disambiguation)

Last updated

An asymptote is a line that a curve approaches as the independent variable tends to some value.

Asymptote may also refer to:

Science and Technology

Related Research Articles

Asymptote In geometry, limit of the tangent at a point that tends to infinity

In analytic geometry, an asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity.

Discrete mathematics Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus or Euclidean geometry. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

Magma is a computer algebra system designed to solve problems in algebra, number theory, geometry and combinatorics. It is named after the algebraic structure magma. It runs on Unix-like operating systems, as well as Windows.

Witch of Agnesi Cubic plane curve

In mathematics, the witch of Agnesi is a cubic plane curve defined from two diametrically opposite points of a circle. It gets its name from Italian mathematician Maria Gaetana Agnesi, and from a mistranslation of an Italian word for a sailing sheet. Before Agnesi, the same curve was studied by Fermat, Grandi, and Newton.

In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.

Richard S. Hamilton

Richard Streit Hamilton is Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. He made foundational contributions to the theory of the Ricci flow and its use in the resolution of the Poincaré conjecture and geometrization conjecture in the field of geometric topology.

In the differential geometry of surfaces, an asymptotic curve is a curve always tangent to an asymptotic direction of the surface. It is sometimes called an asymptotic line, although it need not be a line.

Martin David Kruskal American mathematician

Martin David Kruskal was an American mathematician and physicist. He made fundamental contributions in many areas of mathematics and science, ranging from plasma physics to general relativity and from nonlinear analysis to asymptotic analysis. His single most celebrated contribution was the discovery and theory of solitons.

Engineering mathematics is a branch of applied mathematics concerning mathematical methods and techniques that are typically used in engineering and industry. Along with fields like engineering physics and engineering geology, both of which may belong in the wider category engineering science, engineering mathematics is an interdisciplinary subject motivated by engineers' needs both for practical, theoretical and other considerations outwith their specialization, and to deal with constraints to be effective in their work.

Outline of geometry Overview of and topical guide to geometry

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others.

In differential geometry, the Dupin indicatrix is a method for characterising the local shape of a surface. Draw a plane parallel to the tangent plane and a small distance away from it. Consider the intersection of the surface with this plane. The shape of the intersection is related to the Gaussian curvature. The Dupin indicatrix is the result of the limiting process as the plane approaches the tangent plane. The indicatrix was invented by Charles Dupin.

In statistical modeling, polynomial functions and rational functions are sometimes used as an empirical technique for curve fitting.

Asymptotology has been defined as “the art of dealing with applied mathematical systems in limiting cases” as well as “the science about the synthesis of simplicity and exactness by means of localization".

Geometric design

Geometrical design (GD) is a branch of computational geometry. It deals with the construction and representation of free-form curves, surfaces, or volumesand is closely related to geometric modeling. Core problems are curve and surface modelling and representation. GD studies especially the construction and manipulation of curves and surfaces given by a set of points using polynomial, rational, piecewise polynomial, or piecewise rational methods. The most important instruments here are parametric curves and parametric surfaces, such as Bézier curves, spline curves and surfaces. An important non-parametric approach is the level-set method.

Curve-shortening flow A process that shrinks a smooth curve in the Euclidean plane based on its curvature

In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.

Variational Asymptotic Method (VAM) is a powerful mathematical approach to simplify the process of finding stationary points for a described functional by taking an advantage of small parameters. VAM is the synergy of variational principles and asymptotic approaches, variational principles are applied to the defined functional as well as the asymptotes are applied to the same functional instead of applying on differential equations due to its less prone to errors. This methodology is applicable for whole range of physics problems, where the problem has to be defined in a variational form and should be able to identify the small parameters within the problem definition. In other words, VAM can be applicable where the functional is so complex in determining the stationary points either by analytical or by computationally expensive numerical analysis with an advantage of small parameters. Thus, approximate stationary points in the functional can be utilized to obtain the original functional.