Atom localization

Last updated

Atom localization deals with estimating the position of an atom using techniques of quantum optics with increasing precision. This field finds its origins in the thought experiment by Werner Heisenberg called Heisenberg's microscope, [1] which is commonly used as an illustration of Heisenberg's Uncertainty relation in quantum mechanics textbooks. [2] The techniques have matured enough to offer atom localization along all three spatial dimensions in the subwavelength domain. Atom localization techniques have been applied to other fields requiring precise control or measurement of the position of atom-like entities such as microscopy, nanolithography, optical trapping of atoms, optical lattices, and atom optics. Atom localization is based on employing atomic coherence to determine the position of the atom to a precision smaller than the wavelength of the light being used. This seemingly surpasses the Rayleigh limit of resolution and opens up possibilities of super-resolution for a variety of fields. [3]

Contents

Subwavelength atom localization: surpassing the Rayleigh limit

Given that in the discussion of the Heisenberg's microscope, Rayleigh limit of resolution and Heisenberg's Uncertainty are intricately related creates an impression that surpassing Rayleigh limit would lead to violation of Heisenberg's Uncertainty limit. It can be mathematically shown that the spatial resolution can be enhanced to any amount without violating Heisenberg's Uncertainty relation. [4] The price to be paid is the momentum kick received by the particle whose position is being measured. This is depicted in the figure on the right.

UncertaintyHyperbolaPNG.png

One dimensional atom localization

Localization of an atom in a transverse direction from its direction of motion can be easily achieved using techniques such as quantum interference effects, coherent population trapping, [5] via modification of atomic spectra such as through Autler-Towns Spectroscopy, resonance fluorescence, Ramsey interferometry, and via the monitoring of probe susceptibility through electromagnetically-induced transparency, when the atom is interacting with at least one spatially-dependent standing wave field.

Applications

The study of atom localization has offered practical applications to the area of nanolithography at the Heisenberg limit [6] along with its fundamental importance to the areas of atom optics, [7] and laser cooling and trapping of neutral atoms. [8] Extending the atom localization schemes to two dimensions, optical lattices with tighter than usual confinement at each lattice point can be obtained. Such strongly confined lattice structures could be useful to study several predictions of the Bloch theory of solids, and Mott transitions in much cleaner systems as compared to conventional solids. Such tighter trapping potentials could have further applications to the area of quantum information specifically for the development of deterministic sources of single atoms and single-atom quantum register. Techniques of atom localization are also important to the subwavelength microscopy [9] and imaging and determination of the center-of-mass wavefunction of atom-like entities. [10] [11] [12]

Footnotes

  1. Werner Heisenberg (1949). The Physical Principles of the Quantum Theory . Courier Dover Publications. ISBN   978-0-486-60113-7.
  2. Phillips, A. C. (2003). Introduction to Quantum Mechanics. West Sussex, England: John Wiley & Sons.
  3. Kapale, Kishore T. (2013). "Subwavelength Atom Localization". Progress in Optics. 58 (Chapter 4): 199–250. doi:10.1016/B978-0-444-62644-8.00004-2. ISBN   9780444626448.
  4. Vigoureux, J.M.; Courjon, D. (1992). "Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion". Appl. Opt. 31 (16): 3170–3177. doi:10.1364/AO.31.003170. PMID   20725262.
  5. Agarwal, G.S.; Kapale, K.T. (2006). "Subwavelength atom localization via coherent population trapping". J. Phys. B. 39 (17): 3437–3446. arXiv: quant-ph/0505014 . doi:10.1088/0953-4075/39/17/002. S2CID   119081094.
  6. Johnson, K.S.; Thywissen, J.H.; Dekker, N.H.; Berggren, K.K; Chu, A.P.; Younkin, R.; Prentiss, M. (1998). "Localization of metastable atom beams with optical standing waves: Nanolithography at the Heisenberg limit". Science. 280 (5369): 1583–1586. doi:10.1126/science.280.5369.1583. PMID   9616117.
  7. Adams, C.S.; Sigel, M.; Mlynek, J. (1994). "Atom optics". Phys. Rep. 240 (3): 143–210. doi: 10.1016/0370-1573(94)90066-3 .
  8. Phillips, W.D. (1998). "Laser cooling and trapping of neutral atoms". Rev. Mod. Phys. 70: 721–741. doi: 10.1103/RevModPhys.70.721 .
  9. Kapale, K.T.; Agarwal, G.S. (2010). "Subnanoscale resolution for microscopy via coherent population trapping". Opt. Lett. 35 (16): 2792–2794. doi:10.1364/OL.35.002792. PMID   20717459.
  10. Kapale, K.T.; Qamar, S.; Zubairy, M.S. (2003). "Spectroscopic measurement of an atomic wave function". Phys. Rev. A. 67 (2): 023805. doi:10.1103/PhysRevA.67.023805. hdl: 1969.1/126561 .
  11. Evers, J.; Qamar, S.; Zubairy, M.S. (2007). "Atom localization and center-of- mass wave-function determination via multiple simultaneous quadrature measurements". Phys. Rev. A. 75 (5): 053809. doi:10.1103/PhysRevA.75.053809. hdl: 1969.1/126604 .
  12. Rudy, P.; Ejnisman, R.; Bigelow, N.P. (1997). "Fluorescence investigation of parametrically excited motional wave packets in optical lattices". Phys. Rev. Lett. 78 (26): 4906–4909. doi:10.1103/PhysRevLett.78.4906.

Related Research Articles

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.

Optical tweezers are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.

In physics, a Tonks–Girardeau gas is a Bose gas in which the repulsive interactions between bosonic particles confined to one dimension dominate the system's physics. It is named after physicists Marvin D. Girardeau and Lewi Tonks. It is not a Bose–Einstein condensate as it does not demonstrate any of the necessary characteristics, such as off-diagonal long-range order or a unitary two-body correlation function, even in a thermodynamic limit and as such cannot be described by a macroscopically occupied orbital in the Gross–Pitaevskii formulation.

<span class="mw-page-title-main">Squeezed coherent state</span> Type of quantum state

In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude and in the mode of a light wave. The product of the standard deviations of two such operators obeys the uncertainty principle:

<span class="mw-page-title-main">Electromagnetically induced transparency</span>

Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium.

<span class="mw-page-title-main">Optical parametric oscillator</span>

An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.

A superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit. The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution depending on the illumination wavelength and the numerical aperture NA of the objective lens. Many lens designs have been proposed that go beyond the diffraction limit in some way, but constraints and obstacles face each of them.

An atom laser is a coherent state of propagating atoms. They are created out of a Bose–Einstein condensate of atoms that are output coupled using various techniques. Much like an optical laser, an atom laser is a coherent beam that behaves like a wave. There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for light amplification by stimulated emission of radiation which is not particularly related to the physical object called an atom laser, and perhaps describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in the community today is to distinguish between the BEC, typically obtained by evaporation in a conservative trap, from the atom laser itself, which is a propagating atomic wave obtained by extraction from a previously realized BEC. Some ongoing experimental research tries to obtain directly an atom laser from a "hot" beam of atoms without making a trapped BEC first.

<span class="mw-page-title-main">Optical lattice</span> Atomic-scale structure formed through the Stark shift by opposing beams of light

An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema. The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.

Atom optics "refers to techniques to manipulate the trajectories and exploit the wave properties of neutral atoms". Typical experiments employ beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate or a concave atomic mirror.

In physics, a quantum amplifier is an amplifier that uses quantum mechanical methods to amplify a signal; examples include the active elements of lasers and optical amplifiers.

Interferometric microscopy or imaging interferometric microscopy is the concept of microscopy which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. Interferometric microscopy allows enhancement of resolution of optical microscopy due to interferometric (holographic) registration of several partial images and the numerical combining.

Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

<span class="mw-page-title-main">Trojan wave packet</span> Wave packet that is nonstationary and nonspreading

A trojan wave packet is a wave packet that is nonstationary and nonspreading. It is part of an artificially created system that consists of a nucleus and one or more electron wave packets, and that is highly excited under a continuous electromagnetic field. Its discovery as one of significant contributions to the Quantum Theory was awarded the 2022 Wigner Medal for Iwo Bialynicki-Birula

Muhammad Suhail Zubairy, HI, SI, FPAS, is a University Distinguished Professor as of 2014 in the Department of Physics and Astronomy at the Texas A&M University and is the inaugural holder of the Munnerlyn-Heep Chair in Quantum Optics.

Victor Ivanovich Balykin is a Russian physicist whose main contributions are in the field of atom optics. He and his associates first demonstrated laser cooling of neutral atoms in 1981.

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.

<span class="mw-page-title-main">Carlos Stroud</span> American physicist

Carlos Ray Stroud, Jr. is an American physicist and an educator. Working in the field of quantum optics, Stroud has carried out theoretical and experimental studies in most areas of the field from its beginnings in the late 1960s, studying the fundamentals of the quantum mechanics of atoms and light and their interaction. He has authored over 140 peer-reviewed papers and edited seven books. He is a fellow of the American Physical Society and the Optical Society of America, as well as a Distinguished Traveling Lecturer of the Division of Laser Science of the American Physical Society. In this latter position he travels to smaller colleges giving colloquia and public lectures.