Atomic fountain

Last updated

An atomic fountain measures an atomic hyperfine transition by letting a cloud of laser-cooled atoms fall through an interaction region under the influence of gravity. The atomic cloud is cooled and pushed upwards by a counter-propagating lasers in an optical molasses configuration. The atomic transition is measured precisely with coherent microwaves while the atoms pass through the interaction region. The measured transition can be used in an atomic clock measurement to high precision. [1]

The measurement of the atomic transition in an atomic fountain uses the Ramsey method. [2] In broad strokes, the Ramsey method involves exposing a cloud of atoms to a brief radiofrequency (rf) electromagnetic field; waiting a time T; briefly exposing the cloud to the rf field again; and then measuring what fraction of the atoms in the cloud have been driven from the initial state to final state. [2] When the frequency of the rf field is resonant with the atomic transition, atoms are detected in the final state. [2] The microwave frequency is swept across the atomic transition over many repeated measurements. [3]

The precision of the Ramsey method is inversely proportional to the wait time T of the cloud. [2] The use of an atomic fountain with a cooled atomic cloud allows for wait times on the order of one second, which is vastly greater than what can be achieved by performing the Ramsey method on a hot atomic beam, which may have interaction times on the order of tens of microseconds. [2] This is one reason why NIST-F1, a caesium fountain clock, [4] with a fractional instability of can keep time more precisely than atomic clocks that use interrogate atomic beams, for example the NIST-7 caesium beam clock, with a fractional instability of . [5]

History

The idea of the atomic fountain was first proposed in the 1950s by Jerrold Zacharias. [6] [7] Zacharias attempted to implement an atomic fountain using a thermal beam of atoms, under the assumption that the atoms at the low-velocity end of the Maxwell–Boltzmann distribution would be of sufficiently low energy to execute a reasonably sized parabolic trajectory. [8] However, the attempt was not successful because fast atoms in a thermal beam struck the low-velocity atoms and scattered them. [8]

Related Research Articles

International Atomic Time is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomic clocks in over 80 national laboratories worldwide. It is a continuous scale of time, without leap seconds, and it is the principal realisation of Terrestrial Time. It is the basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds.

<span class="mw-page-title-main">Maser</span> Device for producing coherent EM waves in the sub-visible spectrum

A maser is a device that produces coherent electromagnetic waves (microwaves), through amplification by stimulated emission. The term is an acronym for microwave amplification by stimulated emission of radiation. First suggested by Joseph Weber, the first maser was built by Charles H. Townes, James P. Gordon, and Herbert J. Zeiger at Columbia University in 1953. Townes, Nikolay Basov and Alexander Prokhorov were awarded the 1964 Nobel Prize in Physics for theoretical work leading to the maser. Masers are used as the timekeeping device in atomic clocks, and as extremely low-noise microwave amplifiers in radio telescopes and deep-space spacecraft communication ground stations.

<span class="mw-page-title-main">Second</span> SI unit of time

The second is the unit of time in the International System of Units (SI), historically defined as 186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each. "Minute" comes from the Latin pars minuta prima, meaning "first small part", and "second" comes from the pars minuta secunda, "second small part".

<span class="mw-page-title-main">Laser cooling</span> Class of methods for cooling atoms to very low temperatures

Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuitive that laser cooling often results in sample temperatures approaching absolute zero. It is a routine step in many atomic physics experiments where the laser-cooled atoms are then subsequently manipulated and measured, or in technologies, such as atom-based quantum computing architectures. Laser cooling relies on the change in momentum when an object, such as an atom, absorbs and re-emits a photon. For example, if laser light illuminates a warm cloud of atoms from all directions and the laser's frequency is tuned below an atomic resonance, the atoms will be cooled. This common type of laser cooling relies on the Doppler effect where individual atoms will preferentially absorb laser light from the direction opposite to the atom's motion. The absorbed light is re-emitted by the atom in a random direction. After repeated emission and absorption of light the net effect on the cloud of atoms is that they will expand more slowly. The slower expansion reflects a decrease in the velocity distribution of the atoms, which corresponds to a lower temperature and therefore the atoms have been cooled. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity, therefore the lower the distribution of velocities, the lower temperature of the particles.

The Primary Atomic Reference Clock in Space or PARCS was an atomic-clock mission scheduled to fly on the International Space Station (ISS) in 2008, but cancelled to make way for the Vision for Space Exploration. The mission, to have been funded by NASA, involved a laser-cooled caesium atomic clock, and a time-transfer system using Global Positioning System (GPS) satellites. PARCS was to fly concurrently with the Superconducting Microwave Oscillator (SUMO) a different type of clock that was to be compared against the PARCS clock to test certain theories. The objectives of the mission were to have been:

<span class="mw-page-title-main">Evaporative cooling (atomic physics)</span> Atomic physics technique to achieve high phase space densities

Evaporative cooling is an atomic physics technique to achieve high phase space densities which optical cooling techniques alone typically can not reach.

<span class="mw-page-title-main">NIST-F1</span> Atomic clock

NIST-F1 is a cesium fountain clock, a type of atomic clock, in the National Institute of Standards and Technology (NIST) in Boulder, Colorado, and serves as the United States' primary time and frequency standard. The clock took less than four years to test and build, and was developed by Steve Jefferts and Dawn Meekhof of the Time and Frequency Division of NIST's Physical Measurement Laboratory.

<span class="mw-page-title-main">NIST-7</span>

NIST-7 was the atomic clock used by the United States from 1993 to 1999. It was one of a series of Atomic Clocks at the National Institute of Standards and Technology. Eventually, it achieved an uncertainty of 5 × 10−15. The caesium beam clock served as the nation's primary time and frequency standard during that time period, but it has since been replaced with the more accurate NIST-F1, a caesium fountain atomic clock that neither gains nor loses one second in 100 million years.

<span class="mw-page-title-main">Chip-scale atomic clock</span> Small form factor atomic clock

A chip scale atomic clock (CSAC) is a compact, low-power atomic clock fabricated using techniques of microelectromechanical systems (MEMS) and incorporating a low-power semiconductor laser as the light source. The first CSAC physics package was demonstrated at the National Institute of Standards and Technology (NIST) in 2003, based on an invention made in 2001. The work was funded by the US Department of Defense's Defense Advanced Research Projects Agency (DARPA) with the goal of developing a microchip-sized atomic clock for use in portable equipment. In military equipment it is expected to provide improved location and battlespace situational awareness for dismounted soldiers when the global positioning system is not available, but many civilian applications are also envisioned. Commercial manufacturing of these atomic clocks began in 2011. The CSAC, the world's smallest atomic clock, is 4 x 3.5 x 1 cm in size, weighs 35 grams, consumes only 115 mW of power, and can keep time to within 100 microseconds per day after several years of operation. A more stable design based on the vibration of rubidium atoms was demonstrated by NIST in 2019.

<span class="mw-page-title-main">NIST-F2</span> Atomic clock used for US time standard

NIST-F2 is a caesium fountain atomic clock that, along with NIST-F1, serves as the United States' primary time and frequency standard. NIST-F2 was brought online on 3 April 2014.

<span class="mw-page-title-main">Hydrogen maser</span> Device used as a frequency standard

A hydrogen maser, also known as hydrogen frequency standard, is a specific type of maser that uses the intrinsic properties of the hydrogen atom to serve as a precision frequency reference.

<span class="mw-page-title-main">Time in physics</span> Fundamental quantity in physics

In physics, time is defined by its measurement: time is what a clock reads. In classical, non-relativistic physics, it is a scalar quantity and, like length, mass, and charge, is usually described as a fundamental quantity. Time can be combined mathematically with other physical quantities to derive other concepts such as motion, kinetic energy and time-dependent fields. Timekeeping is a complex of technological and scientific issues, and part of the foundation of recordkeeping.

<span class="mw-page-title-main">David J. Wineland</span> American physicist

David Jeffery Wineland(born February 24, 1944) is an American Nobel-laureate physicist at the National Institute of Standards and Technology (NIST). His work has included advances in optics, specifically laser-cooling trapped ions and using ions for quantum-computing operations. He was awarded the 2012 Nobel Prize in Physics, jointly with Serge Haroche, for "ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems".

<span class="mw-page-title-main">Atomic clock</span> Extremely accurate clock

An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

A quantum clock is a type of atomic clock with laser cooled single ions confined together in an electromagnetic ion trap. Developed in 2010 by physicists at the U.S. National Institute of Standards and Technology, the clock was 37 times more precise than the then-existing international standard. The quantum logic clock is based on an aluminium spectroscopy ion with a logic atom.

In atomic physics, Raman cooling is a sub-recoil cooling technique that allows the cooling of atoms using optical methods below the limitations of Doppler cooling, Doppler cooling being limited by the recoil energy of a photon given to an atom. This scheme can be performed in simple optical molasses or in molasses where an optical lattice has been superimposed, which are called respectively free space Raman cooling and Raman sideband cooling. Both techniques make use of Raman scattering of laser light by the atoms.

Length measurement, distance measurement, or range measurement (ranging) refers to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light.

Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the SI definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.

The Dick effect is an important limitation to frequency stability for modern atomic clocks such as atomic fountains and optical lattice clocks. It is an aliasing effect: High frequency noise in a required local oscillator (LO) is aliased (heterodyned) to near zero frequency by a periodic interrogation process that locks the frequency of the LO to that of the atoms. The noise mimics and adds to the clock's inherent statistical instability, which is determined by the number of atoms or photons available. In so doing, the effect degrades the stability of the atomic clock and places new and stringent demands on LO performance.

References

  1. How the NIST-F1 Caesium Fountain Clock Works
  2. 1 2 3 4 5 C. J. Foot (2005). Atomic Physics. p. 212.
  3. "NIST Launches a New U.S. Time Standard: NIST-F2 Atomic Clock" on YouTube
  4. Jefferts, SR; Heavner, TP; Parker, TE; Shirley, JH (2007). Jones, R. Jason (ed.). "NIST cesium fountains: current status and future prospects". Time and Frequency Metrology. 6673. Bibcode:2007SPIE.6673E..09J. doi:10.1117/12.734965.
  5. Lee, W D; Shirley, J H; Lowe, J P (1995). "The accuracy evaluation of NIST-7". IEEE Transactions on Instrumentation and Measurement. 44 (2): 120–123. Bibcode:1995ITIM...44..120L. doi:10.1109/19.377788.
  6. M. A. Kasevich; et al. (1989). "Atomic fountains and clocks". Optics News. 15 (12): 31–32. doi:10.1364/ON.15.12.000031.
  7. Forman, P (1985). "Atomichron®: The atomic clock from concept to commercial product". Proceedings of the IEEE. 73 (7): 1181–1204. doi:10.1109/PROC.1985.13266.
  8. 1 2 S. Chu (1998). "The manipulation of neutral particles" (PDF). Rev. Mod. Phys. 70 (3): 685–706. Bibcode:1998RvMP...70..685C. doi: 10.1103/RevModPhys.70.685 .