This article needs to be updated.(September 2020) |
Audience scanning (sometimes called crowd scanning) is when a laser lighting display is directed towards its audience. Although this is preferred for many laser effects such as tunnels, it is potentially dangerous due to the high levels of laser radiation exposed to the eyes of audience members.
Laser effects involving audience scanning are created by scanning the beam very rapidly across the audience, ensuring that the net exposure to any one eye is very small. Should the scanning mechanism fail, however, it is possible to expose people to laser light at levels that may produce eye injury.
International legislation concerning the legality of audience scanning varies greatly. The biggest point of contention is the method of calculating the level of exposure actually received. The MPE (maximum permissible exposure) is essentially the same throughout the world, but some countries are far more conservative in their estimations of the amount of light received by the eye. Audience scanning is not widely practiced in the United States; it is far more accepted in the United Kingdom, despite having been stopped for a period, and in the rest of Europe.
The lasers used for many laser displays have energy levels that can exceed the MPE within a few tens of microseconds. Measurement and calculation techniques both show that the beam durations that audience members are routinely subjected would indicate that the MPE is being exceeded, often by a significant factor. Yet reported injuries from medical reports, and even anecdotal reports are rare.
For example, a 1996 study commissioned by a lasershow related company tried to find worldwide reports of audience scanning injuries at any time during the then-20 years of laser light shows. As reported in a 1997 paper presented at the International Laser Safety Conference, the study found only five accidents (claimed injuries) and two incidents (potential injury). [1] Accounting for an estimated 90% under-reporting factor, the ILSC paper estimated that there were roughly 70 injuries per decade — a relatively small number considering the total number of concert-goers and disco patrons exposed to laser light, some night after night.
In making safety calculations for audience scanning, there are two steps. The first is to determine the static laser beam parameters, such as laser power, divergence, audience distance etc. The result will give the irradiance, MPE, Nominal Ocular Hazard Distance (NOHD), and other safety-related characteristics for a fixed beam at the closest point of audience access. This is the "worst case".
The second step is to calculate the effect of scanning this fixed beam. As the beam passes one or more times over the eye, it creates one or more pulses. Thus, single- and multiple-pulse MPEs come into play. For simple, repeated scan patterns, it is possible to calculate the maximum possible exposure, by looking at the location (such as an edge) where the beam is moving slowest (longest dwell time).
But for a laser show, where there are many different scan patterns, it is nearly impossible to calculate the "worst case" location for viewing the show. This is where making multiple measurements of the show can help.
Doing measurements requires caution in using the proper type of instruments, and in correctly setting up and interpreting the measurements. There is no single right answer, since a detector could "pass" the show in one location but "fail" it in another. Taking measurements at a number of different locations—say 10 or 20—can give a general indication as to the show's intensity.
There are a few commercial systems available which help with audience scanning calculations and measurements. [2] [3] One software program is available in a free "Lite" version which can be used to determine basic beam parameters, and worst-case static beam and single pulse calculations. [4]
In November 1998, a panel of safety experts and laser operators, convened by the International Laser Display Association, issued a joint statement regarding audience scanning. It included guidelines and a cautionary statement. [5]
"No system or test can absolutely guarantee eye safety when deliberately scanning the audience. You should use accepted instruments and practices to check the questionable parts of your show. The following tips are general ways to make your show safer through good design practices, and if accepted instruments are not available at your show site."
Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.
A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.
Lidar is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning, a special combination of 3-D scanning and laser scanning. Lidar has terrestrial, airborne, and mobile applications.
A ceilometer is a device that uses a laser or other light source to determine the height of a cloud ceiling or cloud base. Ceilometers can also be used to measure the aerosol concentration within the atmosphere. A ceilometer that uses laser light is a type of atmospheric lidar instrument.
A laser lighting display or laser light show involves the use of laser light to entertain an audience. A laser light show may consist only of projected laser beams set to music, or may accompany another form of entertainment, typically musical performances.
Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.
Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.
A laser pointer or laser pen is a small handheld device with a power source and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by illuminating it with a small bright spot of colored light.
A laser rangefinder, also known as a laser telemeter, is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this technique is not appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are often used. It is a type of scannerless lidar.
A laser harp is an electronic musical user interface and laser lighting display. It projects several laser beams played by the musician by blocking them to produce sounds, visually reminiscent of a harp. It was popularised by Jean-Michel Jarre, and has been a high-profile feature of almost all his concerts since 1981.
Under certain conditions, laser light or other bright lights directed at aircraft can be a hazard. The most likely scenario is when a bright visible laser light causes distraction or temporary flash blindness to a pilot, during a critical phase of flight such as landing or takeoff. It is far less likely, though still possible, that a visible or invisible beam could cause permanent harm to a pilot's eyes. Although laser weapons are under development by armed forces, these are so specialized, expensive and controlled that it is improbable for non-military lasers to cause structural damage to an aircraft.
Scanning laser polarimetry is the use of polarised light to measure the thickness of the retinal nerve fiber layer (RNFL) as part of a glaucoma workup. The GDx-VCC is one example.
Wave radar is a type of radar for measuring wind waves. Several instruments based on a variety of different concepts and techniques are available, and these are all often called. This article, gives a brief description of the most common ground-based radar remote sensing techniques.
A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers—ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power—there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.
A time-of-flight camera, also known as time-of-flight sensor, is a range imaging camera system for measuring distances between the camera and the subject for each point of the image based on time-of-flight, the round trip time of an artificial light signal, as provided by a laser or an LED. Laser-based time-of-flight cameras are part of a broader class of scannerless LIDAR, in which the entire scene is captured with each laser pulse, as opposed to point-by-point with a laser beam such as in scanning LIDAR systems. Time-of-flight camera products for civil applications began to emerge around 2000, as the semiconductor processes allowed the production of components fast enough for such devices. The systems cover ranges of a few centimeters up to several kilometers.
Infrared open-path gas detectors send out a beam of infrared light, detecting gas anywhere along the path of the beam. This linear 'sensor' is typically a few metres up to a few hundred metres in length. Open-path detectors can be contrasted with infrared point sensors.
The aim of an accurate intraocular lens power calculation is to provide an intraocular lens (IOL) that fits the specific needs and desires of the individual patient. The development of better instrumentation for measuring the eye's axial length (AL) and the use of more precise mathematical formulas to perform the appropriate calculations have significantly improved the accuracy with which the surgeon determines the IOL power.
Tree height is the vertical distance between the base of the tree and the tip of the highest branch on the tree, and is difficult to measure accurately. It is not the same as the length of the trunk. If a tree is leaning, the trunk length may be greater than the height of the tree. The base of the tree is where the projection of the pith (center) of the tree intersects the existing supporting surface upon which the tree is growing or where the seed sprouted. If the tree is growing on the side of a cliff, the base of the tree is at the point where the pith would intersect the cliff side. Roots extending down from that point would not add to the height of the tree. On a slope this base point is considered as halfway between the ground level at the upper and lower sides of the tree. Tree height can be measured in a number of ways with varying degrees of accuracy.
The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.
"July 5, 2008 Russian accident", International Laser Display Association, statement on audience scanning accident.
"A Risk Assessment Methodology for the Use of Lasers in the Entertainment Industry", PhD thesis of John O'Hagan of the U.K. Health Protection Agency. See especially section 5.5, Scanned Laser Beams, starting at PDF page 7 (printed page 53)