Audio leveler

Last updated

An audio leveler performs an audio process similar to compression, which is used to reduce the dynamic range of a signal, so that the quietest portion of the signal is loud enough to hear and the loudest portion is not too loud.

Levelers work especially well with vocals, as there are huge dynamic differences in the human voice and levelers work in such a way as to sound very natural, letting the character of the sound change with the different levels but still maintaining a predictable and usable dynamic range.

A leveler is different from a compressor in that the ratio and threshold are controlled with a single control.

Levelers sometimes feature only an overall gain and peak level control (aka normalization control) on particular models to more accurately and subtly manage peak volume.

Related Research Articles

The amplitude of a periodic variable is a measure of its change in a single period. The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude, which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.

Dynamic range is the ratio between the largest and smallest measurable values of a specific quantity. It is often used in the context of signals, like sound and light. It is measured either as a ratio or as a base-10 (decibel) or base-2 logarithmic value of the ratio between the largest and smallest signal values.

<span class="mw-page-title-main">Automatic gain control</span> Electronic circuit to automatically adjust signal strength

Automatic gain control (AGC) is a closed-loop feedback regulating circuit in an amplifier or chain of amplifiers, the purpose of which is to maintain a suitable signal amplitude at its output, despite variation of the signal amplitude at the input. The average or peak output signal level is used to dynamically adjust the gain of the amplifiers, enabling the circuit to work satisfactorily with a greater range of input signal levels. It is used in most radio receivers to equalize the average volume (loudness) of different radio stations due to differences in received signal strength, as well as variations in a single station's radio signal due to fading. Without AGC the sound emitted from an AM radio receiver would vary to an extreme extent from a weak to a strong signal; the AGC effectively reduces the volume if the signal is strong and raises it when it is weaker. In a typical receiver the AGC feedback control signal is usually taken from the detector stage and applied to control the gain of the IF or RF amplifier stages.

Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.

<span class="mw-page-title-main">Mastering (audio)</span> Form of audio post-production

Mastering, a form of audio post production, is the process of preparing and transferring recorded audio from a source containing the final mix to a data storage device, the source from which all copies will be produced. In recent years, digital masters have become usual, although analog masters—such as audio tapes—are still being used by the manufacturing industry, particularly by a few engineers who specialize in analog mastering.

<span class="mw-page-title-main">Dynamic range compression</span> Audio signal processing operation

Dynamic range compression (DRC) or simply compression is an audio signal processing operation that reduces the volume of loud sounds or amplifies quiet sounds, thus reducing or compressing an audio signal's dynamic range. Compression is commonly used in sound recording and reproduction, broadcasting, live sound reinforcement and some instrument amplifiers.

<span class="mw-page-title-main">Audio system measurements</span> Means of quantifying system performance

Audio system measurements are used to quantify audio system performance. These measurements are made for several purposes. Designers take measurements to specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

dbx (noise reduction) Family of noise reduction systems

dbx is a family of noise reduction systems developed by the company of the same name. The most common implementations are dbx Type I and dbx Type II for analog tape recording and, less commonly, vinyl LPs. A separate implementation, known as dbx-TV, is part of the MTS system used to provide stereo sound to North American and certain other TV systems. The company, dbx, Inc., was also involved with Dynamic Noise Reduction (DNR) systems.

ReplayGain is a proposed technical standard published by David Robinson in 2001 to measure and normalize the perceived loudness of audio in computer audio formats such as MP3 and Ogg Vorbis. It allows media players to normalize loudness for individual tracks or albums. This avoids the common problem of having to manually adjust volume levels between tracks when playing audio files from albums that have been mastered at different loudness levels.

Audio normalization is the application of a constant amount of gain to an audio recording to bring the amplitude to a target level. Because the same amount of gain is applied across the entire recording, the signal-to-noise ratio and relative dynamics are unchanged. Normalization is one of the functions commonly provided by a digital audio workstation.

dBFS Unit of measurement for amplitude levels in digital systems

Decibels relative to full scale is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO).

<span class="mw-page-title-main">Peak programme meter</span> A quasi-peak audio level meter originally developed in the 1930s

A peak programme meter (PPM) is an instrument used in professional audio that indicates the level of an audio signal.

<span class="mw-page-title-main">Sound Blaster X-Fi</span> Computer sound card

Sound Blaster X-Fi is a lineup of sound cards in Creative Technology's Sound Blaster series.

<span class="mw-page-title-main">Loudness war</span> Increasing levels in recorded music

The loudness war is a trend of increasing audio levels in recorded music, which reduces audio fidelity and—according to many critics—listener enjoyment. Increasing loudness was first reported as early as the 1940s, with respect to mastering practices for 7-inch singles. The maximum peak level of analog recordings such as these is limited by varying specifications of electronic equipment along the chain from source to listener, including vinyl and Compact Cassette players. The issue garnered renewed attention starting in the 1990s with the introduction of digital signal processing capable of producing further loudness increases.

Audio noise measurement is a process carried out to assess the quality of audio equipment, such as the kind used in recording studios, broadcast engineering, and in-home high fidelity.

Nominal level is the operating level at which an electronic signal processing device is designed to operate. The electronic circuits that make up such equipment are limited in the maximum signal they can handle and the low-level internally generated electronic noise they add to the signal. The difference between the internal noise and the maximum level is the device's dynamic range. The nominal level is the level that these devices were designed to operate at, for best dynamic range and adequate headroom. When a signal is chained with improper gain staging through many devices, clipping may occur or the system may operate with reduced dynamic range.

Parallel compression, also known as New York compression, is a dynamic range compression technique used in sound recording and mixing. Parallel compression, a form of upward compression, is achieved by mixing an unprocessed 'dry', or lightly compressed signal with a heavily compressed version of the same signal. Rather than lowering the highest peaks for the purpose of dynamic range reduction, it decreases the dynamic range by raising up the softest sounds, adding audible detail. It is most often used on stereo percussion buses in recording and mixdown, on electric bass, and on vocals in recording mixes and live concert mixes.

<span class="mw-page-title-main">In-ear monitor</span> Audio earpiece commonly used in live music and television

In-ear monitors, or simply IEMs or in-ears, are devices used by musicians, audio engineers and audiophiles to listen to music or to hear a personal mix of vocals and stage instrumentation for live performance or recording studio mixing. They are also used by television presenters to receive vocal instructions, information and breaking news announcements from a producer that only the presenter hears. They are often custom-fitted to an individual's ears to provide comfort and a high level of noise reduction from ambient surroundings. Their origins as a tool in live music performance can be traced back to the mid-1980s.

A mixing engineer is responsible for combining ("mixing") different sonic elements of an auditory piece into a complete rendition, whether in music, film, or any other content of auditory nature. The finished piece, recorded or live, must achieve a good balance of properties, such as volume, pan positioning, and other effects, while resolving any arising frequency conflicts from various sound sources. These sound sources can comprise the different musical instruments or vocals in a band or orchestra, dialogue or Foley in a film, and more.

EBU R 128 is a recommendation for loudness normalisation and maximum level of audio signals. It is primarily followed during audio mixing of television and radio programmes and adopted by broadcasters to measure and control programme loudness. It was first issued by the European Broadcasting Union in August 2010 and most recently revised in August 2020.